IBM TotalStorage DS4000

Hardware Maintenance Manual
Hardware Maintenance Manual
Before using this information and the product it supports, be sure to read the general information in "Notices" on page 137.
Figures

1. Installation process flow by current publications .. xvii
2. Verifying signal presence .. 5
3. Verifying node end .. 5
4. Type 3523 fibre channel hub ... 6
5. Type 3523 fibre channel hub power connector ... 6
6. Type 3523 fibre channel hub active LEDs ... 7
7. Type 3523 fibre channel hub port bypass LEDs ... 7
8. Type 3523 fibre channel hub parts listing .. 9
9. Fibre Host ID ... 23
10. Media Interface Adapter .. 23
11. Type 3526 fibre channel RAID controller basic configuration 25
12. Type 3526 fibre channel RAID controller basic dual controller configuration 25
13. Type 3526 fibre channel RAID controller orthogonal data striping 26
14. Type 3526 fibre channel RAID controller simple fully redundant 27
15. Type 3526 fibre channel RAID controller cluster/non-cluster share 27
16. Type 3526 fibre channel RAID controller multi-MSCS no external hubs 28
17. Type 3526 fibre channel RAID controller multi-MSCS extended 28
18. Type 3526 fibre channel RAID controller cornhusker configuration 29
19. Type 3526 fibre channel RAID controller basic storage partitions 29
20. Type 3526 fibre channel RAID controller capacity configuration 30
21. Type 3526 fibre channel RAID controller SAN - Using partitions of clusters 30
22. Type 3526 fibre channel RAID controller Legato HA/replication for MSCS 31
23. Type 3526 fibre channel RAID controller parts list .. 33
24. FASTT200 and FASTT200 HA storage server front view .. 37
25. FASTT200 and FASTT200 HA storage server bays (back view) 38
26. FASTT200 and FASTT200 HA storage server interface ports and switches 39
27. FASTT200 and FASTT200 HA storage server LEDs (front) 41
28. FASTT200 and FASTT200 HA storage server LEDs (rear) 42
29. FASTT200 and FASTT200 HA fan and power supply LEDs 43
30. FASTT200 and FASTT200 HA controller parts list .. 46
31. FASTT500 RAID controller indicator lights (front panel) ... 48
32. FASTT500 RAID controller indicator lights (back panel) .. 49
33. FASTT500 RAID controller mini hub indicator lights ... 50
34. FASTT500 RAID controller basic configuration .. 52
35. FASTT500 RAID controller simple fully redundant .. 52
36. FASTT500 RAID controller cluster/non-cluster share ... 53
37. FASTT500 RAID controller multi-MSCS no external hubs ... 53
38. FASTT500 RAID controller multi-MSCS extended ... 54
39. FASTT500 RAID controller cornhusker configuration ... 54
40. FASTT500 RAID controller basic storage partitions ... 55
41. FASTT500 RAID controller capacity configuration .. 55
42. FASTT500 RAID controller capacity configuration host detail 56
43. FASTT500 RAID controller SAN - Using partitions of clusters 56
44. FASTT500 RAID controller Legato HA/replication for MS 57
45. FASTT500 RAID controller parts listing ... 59
46. DS4300 storage server front controls and components ... 66
47. DS4300 dual-controller storage server (model 60U and 60X) back view 67
48. DS4300 single-controller storage server (model 6U and 6LX) back view 68
49. DS4300 dual-controller storage server (model 60U and 60X) interface ports and switches 69
50. DS4300 storage server LEDs (front) ... 71
51. DS4300 RAID controller LEDs ... 72
52. DS4300 storage server fan and power supply LEDs ... 74
53. DS4300 storage server cache active LED .. 75
54. DS4300 storage server battery LED ... 76
55. DS4300 storage server parts list .. 79
56. DS4400 storage server indicator lights ... 82
57. DS4400 storage server RAID controller indicator lights ... 83
58. DS4400 storage server battery indicator lights ... 84
59. DS4400 storage server fan and communications module indicator light 85
60. DS4400 storage server power supply indicator light ... 86
61. DS4400 storage server mini hub indicator lights ... 86
62. DS4400 storage server parts listing .. 90
63. DS4500 storage server indicator lights ... 95
64. DS4500 RAID controller indicator lights ... 96
65. DS4500 storage server battery indicator lights ... 97
66. DS4500 storage server fan and communications module indicator light 98
<table>
<thead>
<tr>
<th></th>
<th>DS4500 storage server power supply indicator light</th>
<th>70. FAST EXP500 storage expansion unit parts list</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DS4500 storage server mini hub indicator lights</td>
<td>71. SDG Router front panel LEDs</td>
</tr>
<tr>
<td></td>
<td>DS4500 storage server parts listing</td>
<td>72. SDG Router showBox command output</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>DS4500 storage server power supply indicator light</td>
<td>98</td>
</tr>
<tr>
<td>68</td>
<td>DS4500 storage server mini hub indicator lights</td>
<td>99</td>
</tr>
<tr>
<td>69</td>
<td>DS4500 storage server parts listing</td>
<td>103</td>
</tr>
<tr>
<td>70</td>
<td>FAST EXP500 storage expansion unit parts list</td>
<td>116</td>
</tr>
<tr>
<td>71</td>
<td>SDG Router front panel LEDs</td>
<td>119</td>
</tr>
<tr>
<td>72</td>
<td>SDG Router showBox command output</td>
<td>130</td>
</tr>
</tbody>
</table>
Tables

<table>
<thead>
<tr>
<th>No.</th>
<th>Entry</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mapping of FAS\textit{T} names to DS4000 Series names</td>
<td>xv</td>
</tr>
<tr>
<td>2</td>
<td>TotalStorage DS4500 storage server document titles by user tasks</td>
<td>xviii</td>
</tr>
<tr>
<td>3</td>
<td>TotalStorage DS4400 storage server document titles by user tasks</td>
<td>xix</td>
</tr>
<tr>
<td>4</td>
<td>TotalStorage DS4300 storage server document titles by user tasks</td>
<td>xx</td>
</tr>
<tr>
<td>5</td>
<td>TotalStorage DS4100 storage server document titles by user tasks</td>
<td>xxi</td>
</tr>
<tr>
<td>6</td>
<td>TotalStorage DS4000-related document titles by user tasks</td>
<td>xxii</td>
</tr>
<tr>
<td>7</td>
<td>TotalStorage DS4000 Storage Manager Version 9 titles by user tasks</td>
<td>xxiii</td>
</tr>
<tr>
<td>8</td>
<td>Type 3523 fibre channel hub port status LEDs</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>Symptom-to-FRU index for Type 3523 fibre channel hub and GBIC</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>Fibre channel PCI adapter operating environment</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>Fibre channel PCI adapter specifications</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>DS4000 host adapter operating environment</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>DS4000 host adapter specifications</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>DS4000 FC2-133 host bus adapter operating environment</td>
<td>18</td>
</tr>
<tr>
<td>15</td>
<td>DS4000 FC2-133 host bus adapter specifications</td>
<td>18</td>
</tr>
<tr>
<td>16</td>
<td>Type 3526 fibre channel RAID controller MIA specifications</td>
<td>23</td>
</tr>
<tr>
<td>17</td>
<td>Symptom-to-FRU index for Type 3526 fibre channel RAID controller</td>
<td>32</td>
</tr>
<tr>
<td>18</td>
<td>Model 3542-2RU storage server operating specifications</td>
<td>36</td>
</tr>
<tr>
<td>19</td>
<td>FAS\textit{T}200 and FAS\textit{T}200 HA storage server LEDs (front)</td>
<td>41</td>
</tr>
<tr>
<td>20</td>
<td>FAS\textit{T}200 and FAS\textit{T}200 HA storage server RAID controller LEDs</td>
<td>42</td>
</tr>
<tr>
<td>21</td>
<td>FAS\textit{T}200 and FAS\textit{T}200 HA fan LEDs</td>
<td>43</td>
</tr>
<tr>
<td>22</td>
<td>FAS\textit{T}200 and FAS\textit{T}200 HA power supply LEDs</td>
<td>43</td>
</tr>
<tr>
<td>23</td>
<td>Symptom-to-FRU index for FAS\textit{T}200 and FAS\textit{T}200 HA Type 3542 controller</td>
<td>44</td>
</tr>
<tr>
<td>24</td>
<td>FAS\textit{T}500 RAID controller indicator lights (front panel)</td>
<td>48</td>
</tr>
<tr>
<td>25</td>
<td>FAS\textit{T}500 RAID controller indicator lights (back panel)</td>
<td>50</td>
</tr>
<tr>
<td>26</td>
<td>FAS\textit{T}500 RAID controller mini hub indicator lights</td>
<td>51</td>
</tr>
<tr>
<td>27</td>
<td>Symptom-to-FRU index for FAS\textit{T}500 RAID controller</td>
<td>57</td>
</tr>
<tr>
<td>28</td>
<td>Additional storage features available for the DS4300 storage servers</td>
<td>63</td>
</tr>
<tr>
<td>29</td>
<td>DS4300 storage server operating specifications</td>
<td>65</td>
</tr>
<tr>
<td>30</td>
<td>DS4300 storage server LEDs (front)</td>
<td>71</td>
</tr>
<tr>
<td>31</td>
<td>DS4300 RAID controller LEDs</td>
<td>72</td>
</tr>
<tr>
<td>32</td>
<td>DS4300 storage server fan LED</td>
<td>74</td>
</tr>
<tr>
<td>33</td>
<td>DS4300 storage server power supply LEDs</td>
<td>74</td>
</tr>
<tr>
<td>34</td>
<td>Symptom-to-FRU index for DS4300 storage server</td>
<td>77</td>
</tr>
<tr>
<td>35</td>
<td>DS4400 storage server indicator lights</td>
<td>82</td>
</tr>
<tr>
<td>36</td>
<td>DS4400 storage server RAID controller indicator lights</td>
<td>84</td>
</tr>
<tr>
<td>37</td>
<td>DS4400 storage server battery indicator lights</td>
<td>85</td>
</tr>
<tr>
<td>38</td>
<td>DS4400 storage server fan and communications module indicator light</td>
<td>85</td>
</tr>
<tr>
<td>39</td>
<td>DS4400 storage server power supply indicator light</td>
<td>86</td>
</tr>
<tr>
<td>40</td>
<td>DS4400 storage server host-side and drive-side mini hub indicator lights</td>
<td>87</td>
</tr>
<tr>
<td>41</td>
<td>Symptom-to-FRU index for DS4400 storage server</td>
<td>89</td>
</tr>
<tr>
<td>42</td>
<td>DS4500 storage server indicator lights</td>
<td>95</td>
</tr>
<tr>
<td>43</td>
<td>DS4500 RAID controller indicator lights</td>
<td>96</td>
</tr>
<tr>
<td>44</td>
<td>DS4500 storage server battery indicator lights</td>
<td>97</td>
</tr>
<tr>
<td>45</td>
<td>DS4500 storage server fan and communications module indicator light</td>
<td>98</td>
</tr>
<tr>
<td>46</td>
<td>DS4500 storage server power supply indicator light</td>
<td>99</td>
</tr>
<tr>
<td>47</td>
<td>DS4500 storage server host-side and drive-side mini hub indicator lights</td>
<td>99</td>
</tr>
<tr>
<td>48</td>
<td>Symptom-to-FRU index for DS4500 RAID controller</td>
<td>101</td>
</tr>
<tr>
<td>49</td>
<td>Specifications for FAS\textit{T} EXP15 and FAS\textit{T} EXP200</td>
<td>106</td>
</tr>
<tr>
<td>50</td>
<td>Symptom-to-FRU index for FAS\textit{T} EXP15 and FAS\textit{T} EXP200 storage expansion units</td>
<td>108</td>
</tr>
<tr>
<td>51</td>
<td>Symptom-to-FRU index for FAS\textit{T} EXP500 storage expansion unit</td>
<td>115</td>
</tr>
<tr>
<td>52</td>
<td>SDG Router LED indicators</td>
<td>119</td>
</tr>
<tr>
<td>53</td>
<td>SDG Router service port commands</td>
<td>120</td>
</tr>
<tr>
<td>54</td>
<td>SDG Router event log levels</td>
<td>126</td>
</tr>
</tbody>
</table>
Safety

Before installing this product, read the Safety information.

Antes de instalar este producto, leia as Informações de Segurança.

在安装本产品之前，请仔细阅读 Safety Information（安全信息）。

安裝本產品之前，請先閱讀「安全資訊」。

Prije instalacije ovog produkta obavezno pročitajte Sigurnosne Upute.

Před instalací tohoto produktu si přečtěte příručku bezpečnostních instrukcí.

Læs sikkerhedsforskrifterne, før du installere dette produkt.

Lees voordat u dit product installeert eerst de veiligheidsvoorschriften.

Ennen kuin asennat tämän tuotteen, lue turvaohjeet kohdasta Safety Information.

Avant d’installer ce produit, lisez les consignes de sécurité.

Vor der Installation dieses Produkts die Sicherheitshinweise lesen.

Прочитайте Инструкции по безопасности, прежде чем устанавливать этот продукт.

Les sikkerhetsinformasjonen (Safety Information) før du installerer dette produktet.

Przed zainstalowaniem tego produktu, należy zapoznać się z książką "Informacje dotyczące bezpieczeństwa" (Safety Information).

Antes de instalar este producto, lea la información de seguridad.

Pred inštaláciou tohto zariadenia si pečtajte Bezpečnostné predpisy.

Pred namestitivijo tega proizvoda preberite Varnostne informacije.

Läs säkerhetsinformationen innan du installera den här produkten.
Caution notice

The following Caution notice is printed in English throughout this document. For a translation of this notice, see IBM® Safety Information.

Statement 5:

CAUTION:
The power control button on the device and the power switch on the power supply do not turn off the electrical current supplied to the device. The device also might have more than one power cord. To remove all electrical current from the device, ensure that all power cords are disconnected from the power source.

Safety information

Before you service an IBM computer, you must be familiar with the following safety information.

General safety

Follow these rules to ensure general safety:

• Observe good housekeeping in the area of the machines during and after maintenance.
• When lifting any heavy object:
 1. Ensure that you can stand safely without slipping.
 2. Distribute the weight of the object equally between your feet.
 3. Use a slow lifting force. Never move suddenly or twist when you attempt to lift.
 4. Lift by standing or by pushing up with your leg muscles; this action removes the strain from the muscles in your back. Do not attempt to lift any objects that weigh more than 16 kg (35 lb) or objects that you think are too heavy for you.
• Do not perform any action that causes hazards to the customer, or that makes the equipment unsafe.
• Before you start the machine, ensure that other service representatives and the customer’s personnel are not in a hazardous position.
• Place removed covers and other parts in a safe place, away from all personnel, while you are servicing the machine.
• Keep your tool case away from walk areas so that other people will not trip over it.
• Do not wear loose clothing that can be trapped in the moving parts of a machine. Ensure that your sleeves are fastened or rolled up above your elbows. If your hair is long, fasten it.
• Insert the ends of your necktie or scarf inside clothing or fasten it with a nonconductive clip, approximately 8 centimeters (3 in.) from the end.
• Do not wear jewelry, chains, metal-frame eyeglasses, or metal fasteners for your clothing. **Remember:** Metal objects are good electrical conductors.
• Wear safety glasses when you are doing any of the following: hammering, drilling, soldering, cutting wire, attaching springs, using solvents, or working in any other conditions that might be hazardous to your eyes.
• After service, reinstall all safety shields, guards, labels, and ground wires. Replace any safety device that is worn or defective.
• Reinstall all covers correctly before returning the machine to the customer.

Grounding requirements

Electrical grounding of the computer is required for operator safety and correct system function. Proper grounding of the electrical outlet can be verified by a certified electrician.

Electrical safety

<table>
<thead>
<tr>
<th>Important</th>
</tr>
</thead>
</table>

| Use only approved tools and test equipment. Some hand tools have handles that are covered with a soft material that does not insulate you when working with live electrical currents. |

| Many customers have, near their equipment, rubber floor mats that contain small conductive fibers to decrease electrostatic discharges. Do not use this type of mat to protect yourself from electrical shock. |

Observe the following rules when working on electrical equipment.
• Find the room emergency power-off (EPO) switch, disconnecting switch, or electrical outlet. If an electrical accident occurs, you can then operate the switch or unplug the power cord quickly.
• Do not work alone under hazardous conditions or near equipment that has hazardous voltages.
• Disconnect all power before doing any of the following tasks:
 – Performing a mechanical inspection
 – Working near power supplies
 – Removing or installing main units
• Before you start to work on the machine, unplug the power cord. If you cannot unplug it, ask the customer to power-off the wall box that supplies power to the machine and to lock the wall box in the off position.
• If you need to work on a machine that has exposed electrical circuits, observe the following precautions:
 – Ensure that another person, familiar with the power-off controls, is near you. **Remember:** Another person must be there to switch off the power, if necessary.
 – Use only one hand when working with powered-on electrical equipment; keep the other hand in your pocket or behind your back. **Remember:** There must be a complete circuit to cause electrical shock. By observing the previous rule, you might prevent a current from passing through your body.
 – When using testers, set the controls correctly and use the approved probe leads and accessories for that tester.
Stand on suitable rubber mats (obtained locally, if necessary) to insulate you from grounds such as metal floor strips and machine frames. Observe the special safety precautions when you work with very high voltages; these instructions are in the safety sections of maintenance information. Use extreme care when measuring high voltages.

- Regularly inspect and maintain your electrical hand tools for safe operational condition.
- Do not use worn or broken tools and testers.
- Never assume that power has been disconnected from a circuit. First, check that it has been powered-off.
- Always look carefully for possible hazards in your work area. Examples of these hazards are moist floors, nongrounded power extension cables, power surges, and missing safety grounds.
- Do not touch live electrical circuits with the reflective surface of a plastic dental mirror. The surface is conductive and can cause personal injury and machine damage.
- Do not service the following parts (or similar units) with the power on when they are removed from their normal operating places in a machine. This practice ensures correct grounding of the units.
 - Power supply units
 - Pumps
 - Blowers and fans
 - Motor generators
- If an electrical accident occurs:
 - Use caution; do not become a victim yourself.
 - Switch off power.
 - Send another person to get medical aid.

Handling ESD-sensitive devices

Any computer part that contains transistors or integrated circuits (ICs) should be considered sensitive to electrostatic discharge (ESD). ESD damage can occur when there is a difference in charge between objects. Protect against ESD damage by equalizing the charge so that the machine, the part, the work mat, and the person that is handling the part are all at the same charge.

Notes:

1. Use product-specific ESD procedures when they exceed the requirements noted here.
2. Make sure that the ESD protective devices that you use have been certified (ISO 9000) as fully effective.

Use the following precautions when handling ESD-sensitive parts:

- Keep the parts in protective packages until they are inserted into the product.
- Avoid contact with other people.
- Wear a grounded wrist strap against your skin to eliminate static on your body.
- Prevent the part from touching your clothing. Most clothing is insulative and retains a charge even when you are wearing a wrist strap.
- Select a grounding system, such as those listed below, to provide protection that meets the specific service requirement.
Note: The use of a grounding system is desirable but not required to protect against ESD damage.

- Attach the ESD ground clip to any frame ground, ground braid, or green-wire ground.
- Use an ESD common ground or reference point when working on a double-insulated or battery-operated system. You can use coax or connector-outside shells on these systems.
- Use the round ground-prong of the ac plug on ac-operated computers.

• Use the black side of a grounded work mat to provide a static-free work surface. The mat is especially useful when handling ESD-sensitive devices.

Safety inspection procedure

Use this safety inspection procedure to identify potentially unsafe conditions on a product. Each machine, as it was designed and built, had required safety items installed to protect users and service personnel from injury. This procedure addresses only those items. However, good judgment should be used to identify any potential safety hazards due to attachment of non-IBM features or options not covered by this inspection procedure.

If any unsafe conditions are present, you must determine how serious the apparent hazard could be and whether you can continue without first correcting the problem.

Consider these conditions and the safety hazards they present:

• Electrical hazards, especially primary power (primary voltage on the frame can cause serious or fatal electrical shock).
• Explosive hazards, such as a damaged cathode ray tube (CRT) face or bulging capacitor
• Mechanical hazards, such as loose or missing hardware

Complete the following checks with the power off, and with the power cord disconnected.

1. Check the exterior covers for damage (loose, broken, or sharp edges).
2. Check the power cord for the following conditions:
 a. A third-wire ground connector in good condition. Use a meter to measure third-wire ground continuity for 0.1 ohm or less between the external ground pin and frame ground.
 b. The power cord should be the appropriate type as specified in the parts listings.
 c. Insulation must not be frayed or worn.
3. Remove the cover.
4. Check for any obvious non-IBM alterations. Use good judgment as to the safety of any non-IBM alterations.
5. Check the inside the unit for any obvious unsafe conditions, such as metal filings, contamination, water or other liquids, or signs of fire or smoke damage.
6. Check for worn, frayed, or pinched cables.
7. Check that the power supply cover fasteners (screws or rivets) have not been removed or tampered with.
About this document

This document provides information about hardware maintenance for the IBM TotalStorage® DS4000 product line.

FASTT product renaming

IBM is in the process of renaming some FASTT family products. Table 1 identifies each new DS4000 product name with its corresponding FASTT product name. Note that this change of product name only indicates no change in functionality or warranty. All products listed below with new names are functionally-equivalent and fully-interoperable. Each DS4000 product retains full IBM service as outlined in service contracts issued for analogous FASTT products.

Table 1. Mapping of FASTT names to DS4000 Series names

<table>
<thead>
<tr>
<th>Current FASTT Product Name</th>
<th>New DS4000 Product Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM TotalStorage FASTT storage server</td>
<td>IBM TotalStorage DS4000</td>
</tr>
<tr>
<td>FASTT</td>
<td>DS4000</td>
</tr>
<tr>
<td>FASTT Family</td>
<td>DS4000 Mid-range Disk System</td>
</tr>
<tr>
<td>FASTT Storage Manager vX.Y (for example 9.10)</td>
<td>DS4000 Storage Manager vX.y (for example v9.10)</td>
</tr>
<tr>
<td>FASTT100</td>
<td>DS4100</td>
</tr>
<tr>
<td>FASTT600</td>
<td>DS4300</td>
</tr>
<tr>
<td>FASTT600 with Turbo Feature</td>
<td>DS4300 Turbo</td>
</tr>
<tr>
<td>FASTT700</td>
<td>DS4400</td>
</tr>
<tr>
<td>FASTT900</td>
<td>DS4500</td>
</tr>
<tr>
<td>EXP700</td>
<td>DS4000 EXP700</td>
</tr>
<tr>
<td>EXP100</td>
<td>DS4000 EXP100</td>
</tr>
<tr>
<td>FASTT FlashCopy</td>
<td>FlashCopy for DS4000</td>
</tr>
<tr>
<td>FASTT VolumeCopy</td>
<td>VolumeCopy for DS4000</td>
</tr>
<tr>
<td>FASTT Remote Mirror (RM)</td>
<td>Enhanced Remote Mirroring for DS4000</td>
</tr>
<tr>
<td>FASTT Synchronous Mirroring</td>
<td>Metro Mirroring for DS4000</td>
</tr>
<tr>
<td></td>
<td>Global Copy for DS4000 (New Feature = Asynchronous Mirroring without Consistency Group)</td>
</tr>
<tr>
<td></td>
<td>Global Mirroring for DS4000 (New Feature = Asynchronous Mirroring with Consistency Group)</td>
</tr>
</tbody>
</table>

Who should read this document

This document is intended for system operators and service technicians who have extensive knowledge of fibre channel and network technology.
How this document is organized

The IBM TotalStorage DS4000 Hardware Maintenance Manual contains basic information, such as specifications and symptom lists, about many of the components of a fibre channel configuration. You can use this information to complete the tasks that are given in the IBM TotalStorage DS4000 Problem Determination Guide, which contains information that you can use to isolate and solve problems that might occur in your fibre channel configurations. It provides problem determination and resolution information for the issues most commonly encountered with IBM fibre channel devices and configurations.

This document contains the following chapters:

Chapter 1, “About hardware maintenance,” on page 1 provides a brief overview on how to use the hardware maintenance, diagnostic, and test information provided in this document.

Chapter 2, “Type 3523 Fibre Channel Hub and GBIC,” on page 3 provides service and diagnostic information for the Type 3523 fibre channel hub and GBIC.

Chapter 3, “Fibre Channel PCI Adapter,” on page 11 provides service and diagnostic information for the fibre channel adapter (FRU 01K7354).

Chapter 4, “DS4000 Host Adapter,” on page 13 provides service and diagnostic information for the DS4000 host adapter (FRU 09V7292).

Chapter 5, “DS4000 FC2-133 Host Bus Adapter,” on page 17 provides service and diagnostic information for the IBM DS4000 FC2-133 (FRU 24P0962) host bus adapter.

Chapter 6, “Type 3526 Fibre Channel RAID Controller,” on page 21 provides service and diagnostic information for the Type 3526 fibre channel RAID controller.

Chapter 7, “FAStT200 Type 3542 and FAStT200 HA Type 3542,” on page 35 provides service and diagnostic information for the Type 3542 FAStT200 and Type 3542 FAStT200 HA.

Chapter 8, “Type 3552 FAStT500 RAID Controller,” on page 47 provides service and diagnostic information for the Type 3552 FAStT500 RAID controller.

Chapter 9, “Type 1722 DS4300 Storage Server,” on page 61 provides service and diagnostic information for the Type 1722 DS4300 RAID controller.

Chapter 10, “Type 1742 DS4400 Storage Server,” on page 81 provides service and diagnostic information for the Type 1742 DS4400 storage server.

Chapter 11, “Type 1742 DS4500 Storage Server,” on page 93 provides service and diagnostic information for the Type 1742 DS4500 storage server.

Chapter 12, “IBM TotalStorage FAStT EXP15 and EXP200 Storage Expansion Units,” on page 105 provides service and diagnostic information for both the EXP15 and EXP200 storage expansion units.

Chapter 13, “IBM TotalStorage FAStT EXP500 Storage Expansion Unit,” on page 111 provides service and diagnostic information for the EXP500 storage expansion unit.
Chapter 14, “IBM Storage Area Network Data Gateway Router (2108-R03),” on page 119 provides service and diagnostic information for the Storage Area Network Data Gateway Router.

“Power cords,” on page 135 lists required power cords for the DS4000 storage components discussed in this document by country and region.

DS4000 installation process overview

The following flow chart gives an overview of the DS4000 hardware and the DS4000 Storage Manager software installation process. Lined arrows in the flow chart indicate consecutive steps in the hardware and software installation process. Labeled arrows indicate which current documents provide detailed information about those steps.

![Flow Chart of DS4000 Installation Process](chart.png)

Figure 1. Installation process flow by current publications

DS4000 Storage Server publications

The following tables present an overview of the DS4500, DS4400, DS4300 Fibre Channel, and DS4100 SATA Storage Server product libraries, as well as other related documents. Each table lists documents that are included in the libraries and what common tasks they address.

You can access the documents listed in these tables at one of the following Web sites:

www-1.ibm.com/servers/storage/support/disk/
DS4500 storage server library

Table 2 associates each document in the DS4500 (previously FASfT900) storage server library with its related common user tasks.

<table>
<thead>
<tr>
<th>Title</th>
<th>User Tasks</th>
</tr>
</thead>
</table>
Table 3. TotalStorage DS4400 storage server document titles by user tasks

<table>
<thead>
<tr>
<th>Title</th>
<th>Planning</th>
<th>Hardware Installation</th>
<th>Software Installation</th>
<th>Configuration</th>
<th>Operation and Administration</th>
<th>Diagnosis and Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM FASTT700 Fibre Channel Cabling Instructions, 32P0343</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM FASTT700 Fibre Channel Storage Server User’s Guide, 32P0341</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM FASIT FC2-133 Dual Port Host Bus Adapter Installation and User’s Guide, GC26-7532</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>IBM TotalStorage FASIT FC2-133 Host Bus Adapter Installation and User’s Guide, 48P9823</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM FASIT Management Suite Java User’s Guide, 32P0081</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>IBM TotalStorage DS4000 Hardware Maintenance Manual, GC26-7702</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM TotalStorage DS4000 Problem Determination Guide, GC26-7703</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DS4300 storage server library

Table 4 associates each document in the DS4300 (previously FASiT600) storage server library with its related common user tasks.

Table 4. TotalStorage DS4300 storage server document titles by user tasks

<table>
<thead>
<tr>
<th>Title</th>
<th>Planning</th>
<th>Hardware Installation</th>
<th>Software Installation</th>
<th>Configuration</th>
<th>Operation and Administration</th>
<th>Diagnosis and Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM TotalStorage FASiT600 Fibre Channel Storage Server Installation and User’s Guide, GC26-7531</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM TotalStorage DS4000 Hardware Maintenance Manual, GC26-7702</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>IBM TotalStorage DS4000 Problem Determination Guide, GC26-7703</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM TotalStorage FASiT FC2-133 Host Bus Adapter Installation and User’s Guide, 48P9823</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM TotalStorage FASiT FC2-133 Dual Port Host Bus Adapter Installation and User’s Guide, GC26-7532</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM TotalStorage FASiT600 Rack Mounting Instructions, 24P8125</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM TotalStorage FASiT600 Fibre Channel Cabling Instructions, 24P8126</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DS4100 storage server library

Table 5 on page xxi associates each document in the DS4100 (previously FASiT100) storage server library with its related common user tasks.

XX IBM TotalStorage DS4000: Hardware Maintenance Manual
Table 5. TotalStorage DS4100 storage server document titles by user tasks

<table>
<thead>
<tr>
<th>Title</th>
<th>User Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning</td>
<td></td>
</tr>
<tr>
<td>Hardware Installation</td>
<td></td>
</tr>
<tr>
<td>Software Installation</td>
<td></td>
</tr>
<tr>
<td>Configuration</td>
<td></td>
</tr>
<tr>
<td>Operation and Administration</td>
<td></td>
</tr>
<tr>
<td>Diagnosis and Maintenance</td>
<td></td>
</tr>
<tr>
<td>IBM TotalStorage DS4100 Installation, User’s, and Maintenance Guide, GC26-7712</td>
<td>✓</td>
</tr>
<tr>
<td>IBM TotalStorage DS4100 Fibre Channel Cabling Instructions, 25R0325</td>
<td>✓</td>
</tr>
<tr>
<td>IBM TotalStorage FASIT FC2-133 Dual Port Host Bus Adapter Installation and User’s Guide, GC26-7532</td>
<td>✓</td>
</tr>
<tr>
<td>IBM FASIT FC2-133 Host Bus Adapter Installation and User’s Guide, 48P9823</td>
<td>✓</td>
</tr>
<tr>
<td>IBM TotalStorage DS4000 Hardware Maintenance Manual, GC26-7702</td>
<td>✓</td>
</tr>
<tr>
<td>IBM TotalStorage DS4000 Problem Determination Guide, GC26-7703</td>
<td>✓</td>
</tr>
</tbody>
</table>
DS4000-related hardware publications

Table 6 associates each of the following documents related to DS4000 (previously FAS(T)) operations with its related common user tasks.

Table 6. TotalStorage DS4000-related document titles by user tasks

<table>
<thead>
<tr>
<th>Title</th>
<th>User Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Planning</td>
</tr>
<tr>
<td>IBM Safety Information, P48P9741</td>
<td></td>
</tr>
<tr>
<td>IBM TotalStorage FAS(T) Quick Start Guide, GC26-7662</td>
<td></td>
</tr>
<tr>
<td>IBM TotalStorage DS4000 Fibre Channel and Serial ATA Intermix Premium Feature Installation Overview GC26-7713</td>
<td></td>
</tr>
<tr>
<td>IBM TotalStorage DS4000 EXP100 Storage Expansion Unit Installation, User’s, and Maintenance Guide, GC26-7694</td>
<td>✓</td>
</tr>
<tr>
<td>Fibre Channel Solutions - IBM FAS(T) EXP500 Installation and User’s Guide, 59P5637</td>
<td>✓</td>
</tr>
<tr>
<td>IBM TotalStorage FAS(T) EXP700 and EXP710 Storage Expansion Units Installation, User’s, and Maintenance Guide, GC26-7647</td>
<td>✓</td>
</tr>
<tr>
<td>IBM TotalStorage DS4000 Hard Drive and Storage Expansion Enclosure Installation and Migration Guide, GC26-7704</td>
<td></td>
</tr>
<tr>
<td>IBM Fibre Channel SAN Configuration Setup Guide, 25P2509</td>
<td>✓</td>
</tr>
<tr>
<td>IBM FAS(T) Host Adapter Installation and User’s Guide, 59P5712</td>
<td></td>
</tr>
</tbody>
</table>
Table 6. TotalStorage DS4000-related document titles by user tasks (continued)

<table>
<thead>
<tr>
<th>Title</th>
<th>Planning</th>
<th>Hardware Installation</th>
<th>Software Installation</th>
<th>Configuration</th>
<th>Operation and Administration</th>
<th>Diagnosis and Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS/6000 @server pSeries Fibre Channel Planning and Integration: User’s Guide and Service Information, SC23-4329</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DS4000 Storage Manager Version 9 publications

Table 7 associates each document in the DS4000 Storage Manager (previously FAST T Storage Manager) library with its related common user tasks.

Table 7. TotalStorage DS4000 Storage Manager Version 9 titles by user tasks

<table>
<thead>
<tr>
<th>Title</th>
<th>Planning</th>
<th>Hardware Installation</th>
<th>Software Installation</th>
<th>Configuration</th>
<th>Operation and Administration</th>
<th>Diagnosis and Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM TotalStorage DS4000 Storage Manager Version 9 Installation and Support Guide for AIX, UNIX, Solaris and Linux on POWER, GC26-7705</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM TotalStorage DS4000 Storage Manager Version 9 Copy Services User’s Guide, GC26-7707</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM TotalStorage FAST T Storage Manager Version 9 Concepts Guide, GC26-7661</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notices used in this document

This document can contain the following notices that are designed to highlight key information:

- **Note:** These notices provide important tips, guidance, or advice.
• **Important:** These notices provide information that might help you avoid inconvenient or problem situations.

• **Attention:** These notices indicate possible damage to programs, devices, or data. An attention notice is placed just before the instruction or situation in which damage could occur.

• **Caution:** These statements indicate situations that can be potentially hazardous to you. A caution statement is placed just before the description of a potentially hazardous procedure step or situation.

• **Danger:** These statements indicate situations that can be potentially lethal or extremely hazardous to you. A danger statement is placed just before the description of a potentially lethal or extremely hazardous procedure step or situation.

Getting information, help, and service

If you need help, service, or technical assistance or just want more information about IBM products, you will find a wide variety of sources available from IBM to assist you. This section contains information about where to go for additional information about IBM and IBM products, what to do if you experience a problem with your IBM @server xSeries™ or IntelliStation® system, and whom to call for service, if it is necessary.

Before you call

Before you call, make sure that you have taken these steps to try to solve the problem yourself:

• Check all cables to make sure that they are connected.

• Check the power switches to make sure that the system is turned on.

• Use the troubleshooting information in your system documentation, and use the diagnostic tools that come with your system.

• Check for technical information, hints, tips, and new device drivers at the IBM Support Web site:

• Use an IBM discussion forum on the IBM Web site to ask questions.

You can solve many problems without outside assistance by following the troubleshooting procedures that IBM provides in the online help or in the documents that are provided with your system and software. The information that comes with your system also describes the diagnostic tests that you can perform. Most xSeries and IntelliStation systems, operating systems, and programs come with information that contains troubleshooting procedures and explanations of error messages and error codes. If you suspect a software problem, see the information for the operating system or program.

Using the documentation

Information about your xSeries or IntelliStation system and preinstalled software, if any, is available in the documents that come with your system. This includes printed documents, online documents, readme files, and help files. See the troubleshooting information in your system documentation for instructions for using the diagnostic programs. The troubleshooting information or the diagnostic programs might tell you that you need additional or updated device drivers or other software.
Web sites

IBM maintains pages on the World Wide Web where you can get the latest technical information and download device drivers and updates.

- For DS4000 information, go to the following Web site:
 The support page has many sources of information and ways for you to solve problems, including:
 - Diagnosing problems, using the IBM Online Assistant
 - Downloading the latest device drivers and updates for your products
 - Viewing frequently asked questions (FAQ)
 - Viewing hints and tips to help you solve problems
 - Participating in IBM discussion forums
 - Setting up e-mail notification of technical updates about your products
- You can order publications through the IBM Publications Ordering System at the following Web site:
- For the latest information about IBM xSeries products, services, and support, go to the following Web site:
- For the latest information about the IBM IntelliStation information, go to the following Web site:
- For the latest information about operating system and HBA support, clustering support, SAN fabric support, and Storage Manager feature support, see the TotalStorage DS4000 Interoperability Matrix at the following Web site:

Software service and support

Through IBM Support Line, for a fee you can get telephone assistance with usage, configuration, and software problems with xSeries servers, IntelliStation workstations, and appliances. For information about which products are supported by Support Line in your country or region, go to the following Web site:

For more information about the IBM Support Line and other IBM services, go to the following Web sites:

- www.ibm.com/services/

Hardware service and support

You can receive hardware service through IBM Integrated Technology Services or through your IBM reseller, if your reseller is authorized by IBM to provide warranty service. Go to the following Web site for support telephone numbers:

In the U.S. and Canada, hardware service and support is available 24 hours a day, 7 days a week. In the U.K., these services are available Monday through Friday, from 9 a.m. to 6 p.m.
Fire suppression systems

A fire suppression system is the responsibility of the customer. The customer’s own insurance underwriter, local fire marshal, or a local building inspector, or both, should be consulted in selecting a fire suppression system that provides the correct level of coverage and protection. IBM designs and manufactures equipment to internal and external standards that require certain environments for reliable operation. Because IBM does not test any equipment for compatibility with fire suppression systems, IBM does not make compatibility claims of any kind nor does IBM provide recommendations on fire suppression systems.

How to send your comments

Your feedback is important to help us provide the highest quality information. If you have any comments about this document, you can submit them in one of the following ways:

• E-mail
 Submit your comments electronically to:

 starpubs@us.ibm.com

 Be sure to include the name and order number of the document and, if applicable, the specific location of the text you are commenting on, such as a page number or table number.

• Mail
 Fill out the Readers’ Comments form (RCF) at the back of this document and return it by mail or give it to an IBM representative. If the RCF has been removed, you can address your comments to:

 International Business Machines Corporation
 Information Development
 Department GZW
 9000 South Rita Road
 Tucson, Arizona 85744–0001
 U.S.A.

 When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.
Chapter 1. About hardware maintenance

This hardware maintenance manual contains basic information, such as specifications and symptom lists, about many of the components of a fibre channel configuration. You can use this information to complete the tasks given in the problem determination procedures provided in the IBM TotalStorage DS4000 Problem Determination Guide.

Note: Graphics used in this document are for illustrative purposes only. The appearance of actual device may differ from the graphic.

The component information that is provided in this document has been extracted from the individual Hardware Maintenance Manuals or Installation and User’s Guides for each component. Therefore, you might find it helpful to see the individual documents for specific components.

Note: For information about how to use and troubleshoot problems with the FC 6228 2 gigabit fibre channel adapter in IBM @server pSeries® AIX hosts, see Fibre Channel Planning and Integration: User’s Guide and Service Information, SC23-4329.

Where to start

Start with the General Checkout sections in each chapter to help you to diagnose problems with the IBM fibre channel products that this document describes.

For error codes and error messages, see the Symptom-to-FRU Index for the server that the fibre channel hub, adapter, or RAID controller is connected to.

Related documents

For information about managed hubs and switches that can be in your installation, see the following publications:

- IBM 3534 SAN Fibre Channel Managed Hub Installation and Service Guide, SY27-7616
- IBM SAN Fibre Channel Switch 2109 Model S08 Installation and Service Guide, SC26-7350
- IBM SAN Fibre Channel Switch 2109 Model S16 Installation and Service Guide, SC26-7352

This installation and service information can be found at the following Web site:

www-1.ibm.com/servers/storage/san/index.html
Chapter 2. Type 3523 Fibre Channel Hub and GBIC

Note: The problem determination (PD) maps found in the IBM TotalStorage DS4000 Problem Determination Guide provide you with additional diagnostic aids.

The type 3523 fibre channel hub and Gigabit Interface Converter (GBIC) are compatible with the following IBM products:

- Fibre channel PCI adapter (FRU 01K7354) (see Chapter 3 on page 11)
- IBM DS4000 host adapter (FRU 09N7292) (see Chapter 4 on page 13)
- Type 3526 fibre channel RAID controller (see Chapter 6 on page 21)

The IBM fibre channel hub is a 7-port central interconnection for Fibre Channel Arbitrated Loops (FC-AL) that follow the ANSI FC-AL standard. Each fibre channel hub port receives serial data from an attached node and retransmits the data out of the next hub port to the next node attached in the loop. Each reception includes data regeneration (both signal timing and amplitude) that supports full-distance optical links.

The fibre channel hub detects any loop node that is missing or is inoperative and automatically routes the data to the next operational port and attached node in the loop. LED indicators provide status information to indicate whether the port is active or bypassed.

Each port requires a GBIC to connect it to each attached node. The fibre channel hub supports any combination of short-wave or long-wave optical GBICs. The GBICs are hot-pluggable into the fibre channel hub, which means you can add host computers, servers, and storage modules to the arbitrated loop dynamically without powering off the fibre channel hub or any connected devices. If you remove a GBIC from a fibre channel hub port, that port is automatically bypassed. The remaining hub ports continue to operate normally with no degradation of system performance. Conversely, if you plug a GBIC into the fibre channel hub, it is automatically inserted and becomes a node on the loop if valid fibre channel data is received from the device.

Data transfer within the fibre channel hub is implemented in serial differential Positive Emitter Coupled Logic (PECL) AC coupled logic. Each fibre channel hub port monitors the serial data input stream as well as the GBIC connected to it.

The following conditions cause the fibre channel hub to bypass a port:

- TX_FAULT: Detects a GBIC transmitter fault
- RX_LOS: Detects a loss of received signal amplitude from the device
- MOD_DEF: Detects the absence of a GBIC

The fibre channel hub circuitry detects off-frequency data, excessive jitter, or inadequate edge transition density on a per-port basis. The fibre channel hub uses the standardized AMP SCA2 20-pin connector to implement hot plugging. Surge currents, caused by hot plugging, are minimized by slow-start circuitry and a pin-sequencing procedure on the GBIC. Electrostatic discharge (ESD) transients are minimized by means of sequenced connector contacts.

The fibre channel hub includes a universal power supply that can operate from 95 to 250 V ac and from 50 to 60 Hz.
General checkout

Installation and operational problems in an arbitrated loop environment are typically caused by one of the following situations:

- Faulty cabling or cable connector
- Incorrect cable plugging
- Faulty GBIC
- Faulty hubs
- Invalid fibre channel signaling from the host bus adapter (HBA) or disk array
- Device driver or microcode conflicts between the HBAs and other devices

The following information will help you to isolate and correct the physical layer problems. For protocol-related problems, such as inoperability between devices, see the documentation that came with the individual devices.

Port Status LEDs

The hub provides two status LEDs for each port (see Table 8). Use these LEDs to help you quickly diagnose and recover from problems.

The upper, green LED is lit when an operational GBIC is installed. The lower, amber LED is lit when the port is in the bypass mode. In the bypass mode, a port is disabled, which prevents erratic signals or data from disrupting loop activity. The bypass mode could be triggered by the loss of a valid signal or by a GBIC fault. The combination of green and amber LEDs indicates one of the four following states.

Table 8. Type 3523 fibre channel hub port status LEDs

<table>
<thead>
<tr>
<th>Green LED</th>
<th>Amber LED</th>
<th>Port State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Off</td>
<td>No GBIC Installed</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Operational GBIC; Valid Signal</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>Faulty GBIC; Port Bypassed</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>Operational GBIC; No Valid Signal; Port Bypassed</td>
</tr>
</tbody>
</table>

Verifying GBIC and cable signal presence

Note: Do not look directly into any fiber cable or GBIC optical output. To view an optical signal, use a mirror to view the reflected light.

Verifying signal presence

In addition to verifying port LED status, you can verify signal presence by using a mirror to look for a reflected light at the fiber-optic cable ends and the GBIC transmitter. To verify signal presence at the hub end of a link, insert a GBIC into the hub and place a mirror at the bottom of the SC connector. If a signal is present, you will see a low intensity red light in the mirror reflecting from the GBIC transmitter. See Figure 2 on page 5.
Verifying node end
To verify the integrity of the fiber-optic cable at the node end of a link, make sure the cable is attached to the GBIC at the hub and the hub is turned on. Dual SC fiber-optic cable connectors are keyed and will insert into a GBIC in one direction only. Place a mirror at the node end of the link. A low intensity red light is visible in the mirror reflection of one of the SC leads, as shown in Figure 3.

If a fiber-optic cable has good transmitter output but a broken or degraded receiver lead, the end node might sense a loop down state. Because the transmitter is good, the hub responds to the end node valid fibre channel signal and adds the device to the loop. But, because the end node is not receiving fibre channel signals, it will stream loop-down sequences onto the loop. This prevents all data communications among the devices on the loop and will continue to do so until the condition is corrected.

Verifying hub end
To verify the integrity of the fiber-optic cable at the hub end, make sure the fiber-optic cable is plugged into the host bus adapter at the host or into a disk-array controller and that the device is enabled on the loop. Using a mirror, examine the cable SC leads to verify that a low-intensity red light is visible on the receiver lead.

Note: Some fiber-optic cables are marked with an A on the receiver lead and a B on the transmitter lead and are keyed. Some multimode cables plugged into a GBIC, HBA, or disk array controller are key-oriented with the B lead inserted into the device transmitter. Place a mirror on the opposite end of the cable to see the low-intensity red light on the A receiver lead.

Additional service information
This section contains additional service information for the fibre channel hub.

Applications and configurations
The fibre channel hub modular interface provides flexibility and is upgradable to available short-wave and long-wave optical fibre channel product port interfaces.
Fibre channel products that are commonly interconnected to the fibre channel hub are fibre channel host bus adapters, FC-AL storage devices, and FC-AL storage arrays. SCSI initiators (workstations and servers) set up and initiate the transfer of data to or from the storage devices. The storage devices that receive the requests made by the SCSI initiators are the SCSI targets. Initiators and targets represent individual nodes that are linked by the shared FC-AL. See Figure 4.

![Figure 4. Type 3523 fibre channel hub](image)

Power on systems check for the fibre channel hub

Power on the storage modules first, then the controller and the fibre channel hub, then everything else.

Note: Make sure the fibre channel hub is powered on before the host adapter to insure proper loop initialization.

Perform the following steps to insure proper operation of the fibre channel hub:

1. Connect the power cord to the fibre channel hub, then to the electrical outlet. See Figure 5.

![Figure 5. Type 3523 fibre channel hub power connector](image)

2. Power on the attached FC-AL compatible nodes.
3. Check the Device Active (green) LEDs on the fibre channel hub ports. See Figure 6 on page 7.
LED On
This indicates that a GBIC is present and functioning properly.

LED Off
This indicates a fault condition. Examples of a fault condition include: a GBIC transmitter fault, an improperly seated GBIC, an absent GBIC, or another failed device. The port will be in the bypass state, which precludes the port from participating in the FC-AL. This is the normal status of operation for fibre channel hub ports in which GBICs are not installed.

Note: FC-AL compatible nodes must perform loop initialization procedures at power on to function properly on the loop. FC-AL nodes also perform loop initialization or reinitialization depending on their prior state of operation.

4. Check the Port Bypass (amber) LEDs. See Figure 7.

LED On
If the Active (green) LED of the port is off, the port is nonoperational and the Bypass (amber) LED for the port is on. If a properly functioning port (the Active green LED is on) with a GBIC present also has the Bypass LED on, either the loss of signal or poor signal integrity has caused the port to go into the bypass state. When the port is in this state, it cannot participate in the FC-AL.

The bypass state is also the normal status condition when no GBIC is present in the port, a GBIC is present but not attached to a FC-AL node, or a GBIC is attached to a cable assembly with nothing attached at the opposite end. Replacing such a port (or removing and reinserting the GBIC into the same port twice) is considered to be a loop configuration change that invokes the Loop Initialization Procedure.

LED Off
This indicates that the fibre channel hub port and device are fully operational and actively participating in the FC-AL.

5. The FC-AL should be fully operational. Check that proper loop discovery has taken place and all required devices are participating in the loop. Some host bus adapters might provide this level of functionality or it might be resident in the application software on the host operating system.
Symptom-to-FRU index

The Symptom-to-FRU index (see Table 9) lists symptoms, errors, and the possible causes. The most likely cause is listed first.

The PD maps found in the IBM TotalStorage DS4000 Problem Determination Guide provide you with additional diagnostic aids.

Note:
1. Always start with the “General checkout” on page 4. For IBM devices not supported by this index, see the manual for that device.
2. Do not look directly into any fiber cable or GBIC optical output. Read “Notices” on page 137. To view an optical signal, use a mirror to view the reflected light.

Table 9. Symptom-to-FRU index for Type 3523 fibre channel hub and GBIC

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action/FRU</th>
</tr>
</thead>
</table>
| GBIC installed in one or more ports but no LED is lit. | 1. Power cord
2. Power source |
| GBIC installed but only the amber LED is lit. | 1. Reseat GBIC
2. GBIC |
| GBIC installed and both green and amber LEDs are lit. | The hub is not receiving a valid fibre channel signal from the end node. Perform the following steps:
1. Unplug the fiber cable from the node and, using a mirror, verify that an optical signal is present on the cable. If no red light is visible, replace the cable.
2. Using a mirror, examine the SC connectors on the HBA or disk controller. If no red light is visible, check the HBA or disk controller.
3. If a light is present on both the cable lead and the end node, check the HBA or the disk controller. |
| GBIC is installed, only the green LED is lit, but no communication occurs between the devices. | The hub is receiving a valid fibre channel signal from the end device, but no upper-level protocols are active. Perform the following steps:
1. Verify that the proper HBA device drivers are loaded for the appropriate operating system and that the host has been configured to recognize the attached disk devices.
2. Unplug the fiber cable from the end node and verify that an optical signal is present on the cable lead. If no signal is present, the lead of the cable might be defective. Replace the cable. |
Parts listing (Type 3523 fibre channel hub and GBIC)

Figure 8 and the following table provide a parts listing for the type 3523 fibre channel hub and GBIC.

<table>
<thead>
<tr>
<th>Index</th>
<th>Fibre channel hub (Type 3523)</th>
<th>FRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Port Fibre Hub Assembly</td>
<td>01K6738</td>
</tr>
<tr>
<td>2</td>
<td>Hub Tray Assembly</td>
<td>10L7042</td>
</tr>
<tr>
<td>3</td>
<td>Hub Tray Bezel</td>
<td>10L7041</td>
</tr>
<tr>
<td>4</td>
<td>Short-Wave GBIC</td>
<td>03K9206</td>
</tr>
<tr>
<td></td>
<td>Long-Wave GBIC (option)</td>
<td>03K9208</td>
</tr>
<tr>
<td></td>
<td>Misc. Hardware Kit</td>
<td>01K6739</td>
</tr>
</tbody>
</table>
Chapter 3. Fibre Channel PCI Adapter

Note: The PD maps found in the IBM TotalStorage DS4000 Problem Determination Guide provide you with additional diagnostic aids.

The fibre channel PCI adapter (FRU 01K7354) is compatible with the following IBM products:
- Type 3523 fibre channel hub and GBIC (see Chapter 2 on page 5)
- Type 3526 fibre channel RAID controller (see Chapter 6 on page 21)
- Type 2109 fibre channel switch
- Type 3534 managed hub

The IBM TotalStorage DS4000 Problem Determination Guide provides detailed configuration information for advanced users who want to use IBM Fast!UTIL to customize the configuration of the fibre channel PCI adapter (FRU 01K7354).

General checkout

The following three basic types of problems can cause the fibre channel PCI adapter to function incorrectly:
- Hardware problems
- System configuration problems
- Fibre channel problems

Hardware problems

The following list will help you determine whether a problem was caused by the hardware:
- Verify that all of the adapters are installed securely.
- Verify that all of the cables are connected securely to the correct connectors. Be sure that the SC connectors that attach from the J1 connector on the fibre channel PCI adapter to the device are connected correctly.
- Verify that the fibre channel PCI adapter is installed correctly and seated firmly in the expansion slot.
- Verify that all peripheral devices are properly powered on. See the IBM TotalStorage DS4000 Problem Determination Guide for information about how to use IBM Fast!UTIL to display attached devices.

System configuration problems

To determine whether a problem was caused by the system configuration, check the system board to make sure it is configured properly (see the appropriate IBM TotalStorage DS4000 Product Installation Guide).

Fibre channel problems

To determine whether a problem was caused by the fibre channel, verify that all of the FC devices were powered on before you powered on the server.

Additional service information

The following information supports the fibre channel PCI adapter.
The IBM fibre channel PCI adapter operating environment and specification information is detailed in Table 10 and Table 11.

Table 10. Fibre channel PCI adapter operating environment

<table>
<thead>
<tr>
<th>Environment</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>0° C (32° F)</td>
<td>55° C (131° F)</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-20° C (-4° F)</td>
<td>70° C (158° F)</td>
</tr>
<tr>
<td>Relative humidity (noncondensing)</td>
<td>10%</td>
<td>90%</td>
</tr>
<tr>
<td>Storage humidity (noncondensing)</td>
<td>5%</td>
<td>95%</td>
</tr>
</tbody>
</table>

Table 11. Fibre channel PCI adapter specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host bus</td>
<td>Conforms to PCI Local Bus Specification, revision 2.1</td>
</tr>
<tr>
<td>PCI signaling environment</td>
<td>3.3 V and 5.0 V buses supported</td>
</tr>
<tr>
<td>PCI transfer rate</td>
<td>264 MB per second maximum burst rate for 33 MHz operation (ISP2100 chip)</td>
</tr>
<tr>
<td>Fibre channel specifications</td>
<td>Bus type: fiber-optic media (QLA2100F)</td>
</tr>
<tr>
<td></td>
<td>Bus transfer rate: 100 MB per second maximum</td>
</tr>
<tr>
<td>Central processing unit (CPU)</td>
<td>Single chip design that includes a RISC processor, fibre channel protocol manager, PCI DMA controller, and 1-gigabit transceivers</td>
</tr>
<tr>
<td>Host data transfer</td>
<td>64-bit, bus master DMA data transfers to 264 MB per second</td>
</tr>
<tr>
<td>RAM</td>
<td>128 KB of SRAM</td>
</tr>
<tr>
<td>BIOS ROM</td>
<td>128 KB of flash ROM in two 64-KB, software selectable banks. The flash is field-programmable.</td>
</tr>
<tr>
<td>NVRAM</td>
<td>256 bytes, field-programmable</td>
</tr>
<tr>
<td>Onboard DMA</td>
<td>Three independent DMA channels: two data and one command. Integrated 4-KB frame buffer FIFO for each data channel</td>
</tr>
<tr>
<td>Connectors (external)</td>
<td>SC-style connector that supports non-OFC, multimode fiber-optic cabling using 1x9 fiber-optic transceiver module. Total cable length cannot exceed 500 meters.</td>
</tr>
<tr>
<td>Form factor</td>
<td>17.78 cm x 10.67 cm (7.0 in. x 4.2 in.)</td>
</tr>
<tr>
<td>Operating power</td>
<td>Less than 15 watts</td>
</tr>
</tbody>
</table>
Chapter 4. DS4000 Host Adapter

Note: The PD maps found in the IBM TotalStorage DS4000 Problem Determination Guide provide you with additional diagnostic aids.

The IBM DS4000 host adapter (FRU 09N7292) is a high-performance, direct memory access (DMA), bus-master host adapter designed for high-end systems. The function and performance are derived from the ISP2200A chip, making the DS4000 host adapter a leading-edge host adapter.

The ISP2200A chip combines a powerful RISC processor, a fibre protocol module (FPM) with gigabit transceivers, and a 64-bit peripheral component interconnect (PCI) local bus interface in a single-chip solution. The DS4000 host adapter supports all fibre channel peripheral devices that support private-loop direct attach (PLDA) and fabric-loop attach (FLA).

The IBM DS4000 host adapter is compatible with the following IBM products:
- Type 3526 fibre channel RAID controller (see Chapter 6 on page 21)
- Type 3552 FAST500 RAID controller (see Chapter 8 on page 47)
- FASTT200 Type 3542 and FASTT200 HA Type 3542 (see Chapter 7 on page 35)
- Type 2109 fibre channel switch
- Type 3534 managed hub

The IBM TotalStorage DS4000 Problem Determination Guide provides detailed configuration information for advanced users who want to use IBM Fast!UTIL to customize the configuration of the fibre channel adapter (FRU 09N7292).

General checkout

The following types of problems can cause the adapter to malfunction:
- Hardware problems
- System configuration problems
- Fibre channel problems

Hardware problems

The following list will help you determine whether your installation problem is caused by the hardware:
- Verify that all adapters are installed securely.
- Verify that all cables are attached securely to the correct connectors. Be sure that the FC connectors that attach from the J1 connector on the adapter to the device are connected securely.
- Verify that the adapter is installed correctly and fully seated in the expansion slot. Check for interference due to nonstandard PCI connectors.
- Verify that all peripheral devices are turned on. See the IBM TotalStorage DS4000 Problem Determination Guide for information about how to use IBM Fast!UTIL to display attached devices.
System configuration problems

To determine whether a problem was caused by the system configuration, check the system board to make sure that it was configured properly (see the appropriate IBM TotalStorage DS4000 Product Installation Guide).

Fibre channel problems

To determine whether your installation problem is caused by the fibre channel, verify that all of the fibre channel devices were turned on before you turned on the server. Also, ensure that all cables are connected properly.

The PD maps found in the IBM TotalStorage DS4000 Problem Determination Guide provide you with additional diagnostic aids.

Additional service information

The following information supports the DS4000 host adapter.

This section contains the DS4000 host adapter operating environment and specification information.

Table 12. DS4000 host adapter operating environment

<table>
<thead>
<tr>
<th>Environment</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>0°C (32°F)</td>
<td>55°C (131°F)</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-20°C (-4°F)</td>
<td>70°C (158°F)</td>
</tr>
<tr>
<td>Relative humidity (noncondensing)</td>
<td>10%</td>
<td>90%</td>
</tr>
<tr>
<td>Storage humidity (noncondensing)</td>
<td>5%</td>
<td>95%</td>
</tr>
</tbody>
</table>

Table 13. DS4000 host adapter specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host bus</td>
<td>Conforms to PCI Local Bus Specification, revision 2.2</td>
</tr>
<tr>
<td>PCI signaling environment</td>
<td>3.3 V and 5.0 V buses supported</td>
</tr>
<tr>
<td>PCI transfer rate</td>
<td>• 264 MB per second maximum burst rate for 33 MHz operation (ISP2200A chip)</td>
</tr>
<tr>
<td></td>
<td>• Supports dual address bus cycles</td>
</tr>
<tr>
<td>Fibre channel specifications</td>
<td>• Bus type: fiber-optic media (shortwave 50 micron)</td>
</tr>
<tr>
<td></td>
<td>• Bus transfer rate: 100 MB per second maximum (200 full-duplex)</td>
</tr>
<tr>
<td></td>
<td>• Supports both FCP-SCSI and IP protocols</td>
</tr>
<tr>
<td></td>
<td>• Supports point-to-point fabric connection: F-Port Fabric Login</td>
</tr>
<tr>
<td></td>
<td>• Supports FC-AL public loop profile: FL-Port Login</td>
</tr>
<tr>
<td></td>
<td>• Supports fibre channel services class 2 and 3</td>
</tr>
<tr>
<td></td>
<td>• FCP SCSI initiator and target operation</td>
</tr>
<tr>
<td></td>
<td>• Full-duplex operation</td>
</tr>
<tr>
<td>Processor</td>
<td>Single chip design that includes a RISC processor, fibre channel protocol manager, PCI DMA controller, and 1-gigabit transceivers</td>
</tr>
<tr>
<td>Host data transfer</td>
<td>64-bit, bus master DMA data transfers to 528 MB per second</td>
</tr>
<tr>
<td>RAM</td>
<td>128 KB of SRAM</td>
</tr>
</tbody>
</table>
Table 13. DS4000 host adapter specifications (continued)

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS ROM</td>
<td>128 KB of flash ROM in two 64 KB, software selectable banks. The flash is field-programmable.</td>
</tr>
<tr>
<td>NVRAM</td>
<td>256 bytes, field-programmable</td>
</tr>
<tr>
<td>Onboard DMA</td>
<td>Three independent DMA channels: two data and one command. Integrated 4 KB frame buffer FIFO for each data channel</td>
</tr>
</tbody>
</table>
| Connectors (external) | • SC-style connector that supports non-OFC, multimode fiber-optic cabling using 1x9 fiber-optic transceiver module
 • Total cable length cannot exceed 500 meters
 • Two three-position, point-to-point cable (internal) |
| Form factor | 17.8 cm x 10.7 cm (7.0 in. x 4.2 in.) |
| Operating power | Less than 15 watts |
| Other compliance | • PCI 98, including ACPI
 • Less than 28% processor utilization as measured in a TPCC benchmark
 • Operation system support for Microsoft® Windows NT® version 4, Windows® 2000 version 1, NetWare version 4.x and 5.x, SCO UnixWare version 7.x
 • Worldwide agency compliance as defined for IBM products
 • 100% Plug and Play compatibility with your existing fibre channel RAID controller |
Chapter 5. DS4000 FC2-133 Host Bus Adapter

Note: The PD maps found in the IBM TotalStorage DS4000 Problem Determination Guide provide you with additional diagnostic aids.

The IBM DS4000 FC2-133 host bus adapter (single port model, FRU 24P0962) is a 2 Gbps high-performance, direct memory access (DMA), bus master, fibre channel host adapter designed for high-end systems. The function and performance are derived from the ISP2312/ISP2340 chips, making the IBM DS4000 FC2-133 host bus adapter a leading-edge host adapter.

The ISP2312/ISP2340 chips combine a powerful, reduced instruction set computer (RISC) processor, a fibre channel protocol manager (FPM) with one 2 Gbps fibre channel transceiver, and a peripheral component interconnect (PCI) or peripheral component interconnect-extended (PCI-X) local bus interface in a single-chip solution. The IBM DS4000 FC2-133 host bus adapter supports all fibre channel (FC) peripheral devices that support private-loop direct attach (PLDA) and fabric-loop attach (FLA).

The IBM TotalStorage DS4000 Problem Determination Guide provides detailed configuration information for advanced users who want to use IBM Fast!UTIL to customize the configuration of the DS4000 FC2-133 host bus adapter.

Note: For information about how to use and troubleshoot problems with the FC 6228 2 Gigabit fibre channel adapter in pSeries AIX® hosts, see Fibre Channel Planning and Integration: User’s Guide and Service Information, SC23-4329-03.

General checkout

The following types of installation problems might cause your DS4000 FC2-133 host bus adapter to function incorrectly:

- Hardware problems
- System configuration problems
- Fibre channel problems

If you are having problems, use the following information to help you determine the cause of the problem and the action to take.

Hardware problems

Take the following actions to determine if your installation problem is caused by the hardware:

- Verify that all adapters are installed securely.
- Verify that all cables are attached securely to the correct connectors. Be sure that one end of the LC-LC fibre channel cable is attached to the optical interface connector (located at J1 on the adapter) and that the other end is connected to the fibre channel device.
- Verify that the DS4000 FC2-133 host bus adapter is installed correctly and is fully seated in the expansion slot. Check for interference due to nonstandard PCI connectors.
- Verify that the Fast!UTIL data-rate setting is correct. The Fast!UTIL data-rate setting must match the speed of the device to which you are connected.
• Verify that all peripheral devices are turned on. See the IBM TotalStorage DS4000 Problem Determination Guide for information about how to use Fast!UTIL to display attached fibre channel devices.

System configuration problems
To verify that your installation problem is caused by the system configuration, check your server to ensure that it is configured properly (see the appropriate IBM TotalStorage DS4000 Product Installation Guide).

Note: All PCI-compliant and PCI-X-compliant systems automatically detect 32-bit or 64-bit adapters and set the appropriate bus speed (for example, 66 MHz or 133 MHz).

Fibre channel problems
To determine if your installation problem is caused by an attached fibre channel device, perform the following actions:
• Verify that all of the fibre channel devices were turned on before you turned on the server.
• Ensure that all cables are connected properly.
• Verify that you configured your RAID storage subsystems using the utilities that the manufacturer provided.
• If your fibre channel switch supports zoning, make sure that your peripheral device is configured to the same switch zone as the DS4000 FC2-133 host bus adapter. For more information, see your fibre channel switch documentation.

Additional service information
Table 14 and Table 15 contain the DS4000 FC2-133 host bus adapter operating environment and specification information.

Table 14. DS4000 FC2-133 host bus adapter operating environment

<table>
<thead>
<tr>
<th>Environment</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>0° C (32° F)</td>
<td>55° C (131° F)</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-20° C (-4° F)</td>
<td>70° C (158° F)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>10%</td>
<td>90%</td>
</tr>
<tr>
<td>Storage humidity</td>
<td>5%</td>
<td>95%</td>
</tr>
</tbody>
</table>

Table 15. DS4000 FC2-133 host bus adapter specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host bus</td>
<td>Conforms to Intel™ PCI Local Bus Specification, revision 2.2 and the PCI-X Addendum, revision 1.0.</td>
</tr>
<tr>
<td>PCI/PCI-X signaling</td>
<td>3.3 V and 5.0 V buses supported</td>
</tr>
<tr>
<td>environment</td>
<td></td>
</tr>
<tr>
<td>PCI/PCI-X transfer rate</td>
<td>• Support for 32 bit and 64 bit PCI bus at 33 MHz and 64 MHz</td>
</tr>
<tr>
<td></td>
<td>• Support for 64 bit PCI-X bus at 50 MHz, 100 MHz, and 133 MHz</td>
</tr>
<tr>
<td></td>
<td>• PCI transfer rate 264 MB per second maximum burst rate for 33 MHz operation (ISP2312/ISP2340 chips)</td>
</tr>
<tr>
<td></td>
<td>• Support for dual address bus cycles</td>
</tr>
<tr>
<td>Type</td>
<td>Specification</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Fibre channel specifications</td>
<td>• Fiber-optic media (shortwave multimode 50 micron cable)
 • Bus transfer rate: 200 MBps maximum at half-duplex and at 400 MBps maximum full-duplex
 • Interface chip: ISP2312/ISP2340 (PCI-X QLA23xx boards)
 • Support for both FCP-SCSI and IP protocols
 • Support for point-to-point fabric connection: F-port Fabric Login
 • Support for FC-AL public loop profile: FL-port Login
 • Support for fibre channel services class 2 and 3
 • Support for FCP SCSI initiator and target operation
 • Support for full-duplex operation</td>
</tr>
<tr>
<td>Processor</td>
<td>Single-chip design that includes a RISC processor, fibre channel protocol manager, PCI/PCI-X DMA controller, and integrated serializer/deserializer (SERDES) and electrical transceivers that can auto-negotiate a data rate of 2 Gbps</td>
</tr>
<tr>
<td>Host data transfer</td>
<td>64-bit, bus-master DMA data transfers to 528 MBps</td>
</tr>
<tr>
<td>RAM</td>
<td>256 KB of SRAM supporting parity protection</td>
</tr>
<tr>
<td>BIOS ROM</td>
<td>128 KB of flash ROM in two 64 KB, software selectable banks. The flash is field programmable.</td>
</tr>
<tr>
<td>NVRAM</td>
<td>256 bytes, field-programmable</td>
</tr>
<tr>
<td>Onboard DMA</td>
<td>Five-channel DMA controller: two data, one command, one auto-DMA request, and one auto-DMA response</td>
</tr>
<tr>
<td>Frame buffer FIFO</td>
<td>Integrated 4 KB transmit and 6 KB receive frame buffer first-in first-out (FIFO) for each data channel</td>
</tr>
<tr>
<td>Connectors (external)</td>
<td>• LC-style connector that supports non-OFC, multimode fiber-optic cabling using a small form factor (SFF) fiber-optic transceiver module.
 • Total cable length cannot exceed 500 m</td>
</tr>
<tr>
<td>Form factor</td>
<td>5.15 cm x 16.75 cm (2.5 in. x 6.7 in.)</td>
</tr>
<tr>
<td>Operating power</td>
<td>Less than 15 watts</td>
</tr>
</tbody>
</table>
Chapter 6. Type 3526 Fibre Channel RAID Controller

The Type 3526 fibre channel RAID controller is compatible with the following IBM products:

- Type 3526 fibre channel hub and GBIC (see Chapter 2 on page 5)
- Fibre channel PCI adapter (FRU 01K7354) (see Chapter 3 on page 11)
- IBM DS4000 host adapter (FRU 09N7292) (see Chapter 4 on page 13)
- Type 2109 fibre channel switch
- Type 3534 managed hub

General checkout

Use the status LEDs and the “Symptom-to-FRU index” on page 32 to diagnose problems.

Note: The PD maps found in the IBM TotalStorage DS4000 Problem Determination Guide provide you with additional diagnostic aids.

The LEDs of the control unit indicate the hardware status:

- Green LED indicates normal operation
- Amber LED indicates a hardware problem

The LEDs on the controller unit indicate the status of the controller unit and its individual components. The green LEDs indicate a normal operating status; amber LEDs indicate a hardware fault. Check all of the LEDs on the front and back of the controller unit when it is powered on.

Notes:

1. If power was just applied to the controller unit, the green and amber LEDs might turn on and off intermittently. Wait until the controller unit finishes powering up before you begin checking for faults.
2. To view the controller Customer Replaceable Unit (CRU) LEDs, the front cover must be removed from the controller unit.

Also use LEDs on the front cover, controller CRUs, and drive units (if applicable) to determine whether the controllers and drives are responding to I/O transmissions from the host.

The following list describes LED activities:

- If a Fast Write Cache operation to the controller unit (or attached drive units), or if other I/O activity is in progress, then you might see several green LEDs blinking, including: the Fast Write Cache LED (on the front cover), controller CRU status LEDs, or applicable drive activity LEDs.
- The green Heartbeat LEDs on the controller CRUs blink continuously. The number and pattern of green status LEDs lit on the controllers depend on how the system is configured. An active controller will not have the same status LEDs lit as a passive controller. See the appropriate IBM TotalStorage DS4000 Product Installation Guide.
Additional service information

This section provides additional service information about the Type 3526 fibre channel RAID controller.

Powering on the controller

Note: All drive modules must be powered on before you power on the controller.

The controller might take from three to 10 seconds to power on. During this time, the amber and green LEDs on the controller unit flash.

After power on, check all fault LEDs to make sure they are off. If a fault LED is on, see the “Symptom-to-FRU index” on page 32.

Recovering from a power supply shutdown

Both power supplies have a built-in temperature sensor designed to prevent the power supplies from overheating. If a temperature sensor detects an over-temperature condition (ambient air temperature of 70° C (158° F) or above), the overheated power supply automatically shuts down. The other power supply remains on as long as its temperature remains below 70° C (158° F). If not, the second power supply shuts down, which turns off all power to the controller unit.

After the air temperature cools to below 70° C (158° F), the power supplies automatically restart. An automatic restart resets the controllers, attempts to spin up the drives (which has no effect on the drives if they are already running), and returns the controller unit to a normal operating state. Typically, you will not need to perform recovery procedures after an automatic power supply shutdown and restart.

After a power supply shutdown, check all controller LEDs.

If the power supply power LED is off, or the amber power supply LED on the front cover is on, go to the “Symptom-to-FRU index” on page 32.

Connectors and host IDs

The host ID switches and connectors for interface cables are on the connector plate located on the back of the controller unit.

Host and drive ID numbers

Each controller must have a unique Fibre Host ID number (see Figure 9 on page 23). The Host ID numbers assigned to each controller are based on two elements:

- Host ID numbers set through hardware switches on the controller unit. Five Host ID switches allow you to set ID numbers 0 through 127 for each controller. The factory default settings are ID #5 for Controller A and ID #4 for controller B.
- Software algorithms that calculate the actual fibre channel address, based on the controller unit’s hardware settings and position on the loop or hub

Note: The preferred ID is assigned on the fibre channel loop unless it is already being used. If the ID is already in use, a soft ID is assigned.
Fibre channel host cable requirements

For the Type 3526 fibre channel RAID controller, you must use multi-mode, 50-micrometer fiber-optic cable and a Media Interface Adapter (MIA), shown in Figure 10.

Table 16 provides specifications for the MIA.

<table>
<thead>
<tr>
<th>Cable</th>
<th>Media type</th>
<th>Data size</th>
<th>Transfer speed</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber-optic (multi-mode, 50-micrometer)</td>
<td>Short-wave laser</td>
<td>100 MBps</td>
<td>1062.5 Mbaud</td>
<td>up to 500 m (1640 ft.)</td>
</tr>
</tbody>
</table>

LVD-SCSI drive cable requirements

To connect the controller unit to a drive module, you must use 68-pin, VHDCI (very high density cable interface) LVD, Ultra 2 SCSI cables. The controller unit has six drive connectors that support 16-bit interface protocols. Each connector represents a single drive channel that supports up to 10 drives per channel for a total of 60 drives.
Specifications

Size
- With front panel:
 - Depth: 610 mm (24 in.)
 - Height: 174 mm (6.8 in.)
 - Width: 482 mm (19 in.)

Weight
- Controller unit maximum weight: 34.5 kg (76 lb)
- Controller unit empty: 14.3 kg (31.6 lb)
- Battery: 9.7 kg (21.4 lb)

Electrical Input
- Sign-wave input (50 to 60 Hz)
 - Low range: Minimum: 90 V ac Maximum: 127 V ac
 - High range: Minimum: 198 V ac Maximum: 257 V ac
- Input Kilovolt-amperes (kVA) approximately:
 - Minimum configuration: 0.06 kVA
 - Maximum configuration: 0.39 kVA

Environment
- Air temperature:
 - hub on: 10° to 35° C (50° to 95° F) Altitude: 0 to 914 m (3000 ft.)
 - hub on: 10° to 32° C (50° to 90° F) Altitude: 914 m (3000 ft.) to 2133 m (7000 ft.)
- Humidity:
 - 8% to 80%

Heat Output
- Approximate heat output in British Thermal Units (BTU) per hour:
 - Maximum configuration: 731.8 BTU (214 watts)

Acoustical Noise Emissions Values
- Sound Power (idling and operating):
 - 6.4 bels
- Sound Pressure (idling and operating):
 - 50 dBA

Tested configurations
The following configurations [Figure 11 on page 25 through Figure 22 on page 31] are for the Type 3526 fibre channel RAID controller.
Basic Configuration

![Diagram of basic configuration]

Note: Basic as shipped, single controller, no hubs or switches

Figure 11. Type 3526 fibre channel RAID controller basic configuration

Basic Dual Controller Configuration

![Diagram of dual controller configuration]

Note 1: Adapters can be in the same or different systems; choice affects total redundancy
Note 2: No hubs or switches
Note 3: For max redundancy on the drive side use orthogonal striping (see orthogonal striping chart)
Note 4: This config does not provide for “NO single point of failure”

Figure 12. Type 3526 fibre channel RAID controller basic dual controller configuration
Orthogonal Data Striping

Data striped across channels

SCSI Channel 1

SCSI Channel 2

SCSI Channel 3

SCSI Channel 4

SCSI Channel 5

SCSI Channel 6

EXP10, 15 or 200

Figure 13. Type 3526 fibre channel RAID controller orthogonal data striping
Simple Fully Redundant

Note 1: Since disks are seen from multiple places some form of protection such as MSCS, storage partitioning, Sanergy, Oracle etc must be used.
Note 2: For best performance and manageability, a managed hub switch is preferred.
Note 3: Always try to keep connections to hub on adjacent ports and unplug all unused GBICs.

Figure 14. Type 3526 fibre channel RAID controller simple fully redundant

Cluster/Non-Cluster Share

Note: Factors such as performance and number of storage partitions influence the number and type of nodes.

Figure 15. Type 3526 fibre channel RAID controller cluster/non-cluster share
Multi-MSCS No External Hubs

Clus1

Clus2

Notes: 2 partitions shown; Clus1 partition separate from Clus2 partition. LD is a logical drive

Figure 16. Type 3526 fibre channel RAID controller multi-MSCS no external hubs

Multi-MSCS extended

Notes:
- Each group of 4 ports on the switches (red dash box) can support one cluster element (black dash box)
- Storage partitioning is used to separate clusters
- Match performance needs of servers to max I/O available from 60 drives
- You may use some the switch ports to add 3526 units rather than hosts. Extending this to 16 port switches allows more of both

Figure 17. Type 3526 fibre channel RAID controller multi-MSCS extended
Notes: Running Cornhusker Software 4 to 8 node configs are supported 8 port managed hubs or switches can be used as shown Using 16 port switches removes need to cascade Performance would be best with switches

Figure 18. Type 3526 fibre channel RAID controller cornhusker configuration

Base Storage Partitions

Figure 19. Type 3526 fibre channel RAID controller basic storage partitions
Capacity Configuration

SAN - Using Partitions of Clusters

Figure 20. Type 3526 fibre channel RAID controller capacity configuration

Figure 21. Type 3526 fibre channel RAID controller SAN - Using partitions of clusters
Legato HA/Replication for MSCS

Figure 22. Type 3526 fibre channel RAID controller Legato HA/replication for MSCS
Table 17. Symptom-to-FRU index for Type 3526 fibre channel RAID controller

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action/FRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller LED (front cover) is on.</td>
<td>1. Reseat Controller CRU</td>
</tr>
<tr>
<td></td>
<td>2. Place Controller online using DS4000 Storage Manager GUI</td>
</tr>
<tr>
<td></td>
<td>3. If in passive mode, check Fibre path/GBIC</td>
</tr>
<tr>
<td></td>
<td>4. Controller CRU</td>
</tr>
<tr>
<td>Software issued a controller error message.</td>
<td>1. Check Controller Fan</td>
</tr>
<tr>
<td></td>
<td>2. Controller CRU</td>
</tr>
<tr>
<td>Software errors occur when attempting to access controllers or drives.</td>
<td>1. Check appropriate software and documentation to make sure the system is set up correctly and the proper command was run.</td>
</tr>
<tr>
<td></td>
<td>2. Power to the Controller</td>
</tr>
<tr>
<td></td>
<td>3. Interface cables</td>
</tr>
<tr>
<td></td>
<td>4. ID settings</td>
</tr>
<tr>
<td></td>
<td>5. Controller</td>
</tr>
<tr>
<td></td>
<td>6. Drive</td>
</tr>
<tr>
<td></td>
<td>7. Controller backpanel</td>
</tr>
<tr>
<td>Fan LED (front cover) is on.</td>
<td>1. Power supply fan CRU</td>
</tr>
<tr>
<td></td>
<td>2. Controller fan CRU</td>
</tr>
<tr>
<td>Controller and Fan fault LEDs (front cover) are on.</td>
<td>1. Check both Fan and Controller CRUs for fault LED and replace faulty CRU.</td>
</tr>
<tr>
<td>Fault-A or Fault-B LED (battery CRU) is on.</td>
<td>1. Battery CRU</td>
</tr>
<tr>
<td>Note: The Fault-A or Fault-B LED will be on during battery charging.</td>
<td></td>
</tr>
<tr>
<td>Full Charge-A or Full Charge-B LED (battery CRU) is off.</td>
<td>1. Power on Controller and allow batteries to charge for 24 hours until the Full Charge LEDs are on.</td>
</tr>
<tr>
<td></td>
<td>2. Battery CRU</td>
</tr>
<tr>
<td></td>
<td>3. Both power supplies</td>
</tr>
<tr>
<td>No power to controller (all power LEDs off).</td>
<td>1. Check power switches and power cords.</td>
</tr>
<tr>
<td></td>
<td>2. Power supplies</td>
</tr>
</tbody>
</table>
Table 17. Symptom-to-FRU index for Type 3526 fibre channel RAID controller (continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action/FRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply LED is off.</td>
<td>1. Check and reseat power supply.</td>
</tr>
<tr>
<td></td>
<td>2. Check for overheating. Wait ten minutes for the power supply CRU to cool down. See “Recovering from a power supply shutdown” on page 22.</td>
</tr>
<tr>
<td></td>
<td>3. Power supply CRU</td>
</tr>
<tr>
<td>Power Supply CRU LEDs are on, but all other CRU LEDs are off.</td>
<td>1. DC power harness</td>
</tr>
</tbody>
</table>

Parts listing

Figure 23 and the following table provide a parts listing for the type 3526 fibre channel RAID controller.

![Type 3526 fibre channel RAID controller parts list](image)

<table>
<thead>
<tr>
<th>Index</th>
<th>Fibre channel RAID controller (Type 3526)</th>
<th>FRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>350-W Power Supply</td>
<td>01K6743</td>
</tr>
<tr>
<td>2</td>
<td>Rear Fan Assembly (Power Supply Fan)</td>
<td>01K6741</td>
</tr>
<tr>
<td>3</td>
<td>Optical Cable - 5 Meters (option)</td>
<td>03K9202</td>
</tr>
<tr>
<td>3</td>
<td>Optical Cable - 25 Meters (option)</td>
<td>03K9204</td>
</tr>
<tr>
<td>4</td>
<td>Media Interface Adapter (MIA)</td>
<td>03K9280</td>
</tr>
<tr>
<td>5</td>
<td>Frame Assembly with Midplane</td>
<td>10L6981</td>
</tr>
<tr>
<td>6</td>
<td>Controller Assembly with 32 MB memory/128 MB cache</td>
<td>10L6993</td>
</tr>
<tr>
<td>7</td>
<td>Battery Backup Assembly</td>
<td>01K6742</td>
</tr>
<tr>
<td>8</td>
<td>Bezel Assembly</td>
<td>10L7043</td>
</tr>
<tr>
<td>Index</td>
<td>Fibre channel RAID controller (Type 3526)</td>
<td>FRU</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>9</td>
<td>Front Fan Assembly (Controller CRU Fan)</td>
<td>01K6740</td>
</tr>
<tr>
<td></td>
<td>128 MB cache module</td>
<td>10L5862</td>
</tr>
<tr>
<td></td>
<td>Battery Cable</td>
<td>03K9285</td>
</tr>
<tr>
<td></td>
<td>Fan Cable</td>
<td>03K9281</td>
</tr>
<tr>
<td></td>
<td>Power Cable</td>
<td>03K9284</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous Hardware Kit</td>
<td>01K6739</td>
</tr>
<tr>
<td></td>
<td>Rail Kit</td>
<td>10L6982</td>
</tr>
</tbody>
</table>

“Power cords,” on page 135 lists required power cords for the DS4000 storage components discussed in this document by country and region.
Chapter 7. FAStT200 Type 3542 and FAStT200 HA Type 3542

The FAStT200 Type 3542 and FAStT200 HA Type 3542 are compatible with the following IBM products:

- IBM DS4000 host adapter (FRU 09N7292) (see Chapter 4 on page 13)
- IBM FAStT EXP500 storage expansion unit (see Chapter 13 on page 111)
- Type 3534-F08 fibre channel switch
- Type 2109 Series fibre channel switches
- Type 2005 Series fibre channel switches
- DS4000 FC2-66 host bus adapter (FRU 19K1247)
- DS4000 FC2-133 host bus adapter (FRU 24P0962) (see Chapter 5 on page 17)

General checkout

Use the status LEDs, symptom-to-FRU list, and the storage management software to diagnose problems. See “Monitoring status through software” on page 40 and “Checking the LEDs” on page 40.

To diagnose a cluster system, use the cluster problem determination procedure in the IBM TotalStorage DS4000 Problem Determination Guide. The PD maps found in the IBM TotalStorage DS4000 Problem Determination Guide also provide you with additional diagnostic aids.

Note: If power was just applied to the controller unit, the green and amber LEDs might turn on and off intermittently. Wait until the controller unit finishes powering up before you begin to check for faults.

General information

The IBM FAStT200 storage server is available in two models.

The IBM FAStT200 HA storage server (Model 3542-2RU) comes with two RAID controllers, two power supplies, and two cooling units and provides dual, redundant controllers, redundant cooling, redundant power, and battery backup of the RAID controller cache.

The IBM FAStT200 storage server (Model 3542-1RU) comes with one RAID controller, two power supplies, and two cooling units and provides battery backup of the RAID controller cache. A FAStT200 Redundant RAID controller option is available for purchase. Contact your IBM reseller or IBM marketing representative.

The IBM FAStT200 HA storage server is designed to provide maximum host- and drive-side redundancy. Each RAID controller supports direct attachment of one host that contains one or two host adapters. By using external managed hubs and switches in conjunction with the storage server, you can build even larger configurations. (Throughout this chapter, the use of hub or external hub refers to a managed hub.)
Note: Throughout this chapter, the term storage server refers to both the IBM FASiT200 storage server (Model 3542-1RU) and the IBM FASiT200 HA storage server (Model 3542-2RU). Model-specific information is noted where applicable.

Additional service information

This section provides additional service information about the IBM FASiT200 storage server.

Operating specifications

Table 18 summarizes the operating specifications of the controller unit.

<table>
<thead>
<tr>
<th>Environment</th>
<th>Acoustical noise emissions values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air temperature:</td>
<td>For open bay (0 drives installed) and typical system configurations (8 hard disk drives installed):</td>
</tr>
<tr>
<td>- Storage server on: 10° to 35° C (50° to 95° F) Altitude: 0 to 914 m (3000 ft.)</td>
<td>• Sound power (idling):</td>
</tr>
<tr>
<td>- Storage server on: 10° to 32° C (50° to 90° F) Altitude: 914 m (3000 ft.) to 2133 m (7000 ft.)</td>
<td>- 6.3 bels (open bay)</td>
</tr>
<tr>
<td>- Humidity:</td>
<td>- 6.5 bels (typical)</td>
</tr>
<tr>
<td>- 8% to 80%</td>
<td>• Sound power (operating):</td>
</tr>
<tr>
<td></td>
<td>- 6.3 bels (open bay)</td>
</tr>
<tr>
<td></td>
<td>- 6.8 bels (typical)</td>
</tr>
<tr>
<td></td>
<td>• Sound pressure (idling):</td>
</tr>
<tr>
<td></td>
<td>- 47 dBA (open bay)</td>
</tr>
<tr>
<td></td>
<td>- 65 dBA (typical)</td>
</tr>
<tr>
<td></td>
<td>• Sound pressure (operating):</td>
</tr>
<tr>
<td></td>
<td>- 47 dBA (open bay)</td>
</tr>
<tr>
<td></td>
<td>- 68 dBA (typical)</td>
</tr>
</tbody>
</table>

These levels are measured in controlled acoustical environments according to ISO 7779 and are reported in accordance with ISO 9296. The declared sound power levels indicate an upper limit, below which a large portion of machines operate. Sound pressure levels in your location might exceed the average 1-meter values stated because of room reflections and other nearby noise.

Storage server components

The following sections show the components of the storage server.

The hot-swap features of the storage server enable you to remove and replace hard disk drives, power supplies, RAID controllers, and fans without turning off the storage server. Therefore, you can maintain the availability of your system while a hot-swap device is removed, installed, or replaced.

Front view

Figure 24 on page 37 shows the components and controls on the front of the server.
Power-on LED
When on, this green light indicates that the unit has adequate dc power.

General-system-error LED
When on, this amber LED indicates that the storage server has a fault, such as in a power supply, fan unit, or hard disk drive.

Note: If the General-system-error LED is on continuously (not flashing), there is a problem with the storage server. Use the storage management software to diagnose and repair the problem. For more information, see “Checking the LEDs” on page 40.

Hot-swap drive CRU
You can install up to 10 hot-swap drive CRUs in the storage server. Each drive CRU consists of a hard disk drive and tray.

Filler panel
The storage server comes without drives installed and contains filler panels in the unused drive bays. Before you install new drives, you must remove the filler panels and save them. Each of the 10 bays must always contain either a filler panel or a drive CRU. Each filler panel contains a filler piece for use with a slim drive.

Drive activity LED
Each drive CRU has a green Drive activity LED. When flashing, this green LED indicates drive activity. When on continuously, this green LED indicates that the drive is properly installed.

Drive fault LED
Each drive CRU has an amber Drive fault LED. When on, this amber LED indicates a drive failure. When flashing, this amber LED indicates that a drive identify or rebuild process is in progress.

Latch
This multipurpose blue latch releases or locks the drive CRU in place.

Tray handle
You can use this multipurpose handle to insert and remove a drive CRU in the bay.

For information on how to install and replace drive CRUs, see the appropriate IBM TotalStorage DS4000 Product Installation Guide. For more information about the LEDs, see “Checking the LEDs” on page 40.

Back view
Figure 25 on page 38 shows the components at the back of the storage server.
Note: If your storage server is a Model 1RU, there is only one RAID controller. There is a blank panel in the second RAID controller opening. The blank panel must remain in place to maintain proper cooling.

RAID controller
The storage server comes with one or two hot-swap RAID controllers. Each RAID controller contains two ports for Gigabit Interface Converters (GBICs) which connect to the fibre channel cables. One GBIC connects to a host system. The other GBIC is used to connect additional expansion units to the storage server.

Each RAID controller also contains a battery to maintain cache data in the event of a power failure. For more information, see the appropriate IBM TotalStorage DS4000 Installation and User’s Guide.

Important: The replacement RAID controller CRU does not come with a RAID controller cache battery installed. You must remove the cache battery that is inside the existing RAID controller that you are replacing, and install that battery inside the replacement RAID controller CRU. For the steps to remove and replace the battery, see the appropriate IBM TotalStorage DS4000 Installation and User’s Guide.

Hot-swap fans
The storage server has two interchangeable hot-swap and redundant fan CRUs. Each fan CRU contains two fans. If one fan CRU fails, the second fan CRU continues to operate. You must install both fan CRUs to maintain proper cooling within your storage server, even if one fan CRU is not operational.

Hot-swap power supplies
The storage server comes with two hot-swap power supplies. You must install both power supplies to maintain proper cooling.

Interface ports and switches
[Figure 26 on page 39] shows the ports and switches on the back of the storage server.
Each RAID controller contains several connectors and LEDs. Each controller has one host port and one expansion port for connecting the storage server to hosts or expansion units. You first insert a GBIC into the port and then connect the fibre channel cables.

Host port
The host port is used to connect fibre channel cables from the host systems. You first insert a GBIC into the port and then connect the fibre channel cables.

Ethernet port
The Ethernet port is for an RJ-45 10 BASE-T or 100 BASE-T Ethernet connection. Use the Ethernet connection to directly manage storage subsystems.

Expansion port
The expansion port is used to connect additional expansion units to the RAID controllers. You can connect one expansion unit to each RAID controller. You first insert a GBIC into the port and then connect the fibre channel cables.

RS-232 port
The RS-232 port is a TJ-6 modular jack and is used for an RS-232 serial connection. The RS-232 port is used by service personnel to perform diagnostic operations on the RAID controllers. An RS-232 cable comes with the storage server.

Diagnostics

To diagnose fibre channel problems, use FASTT MSJ (see the IBM TotalStorage DS4000 Problem Determination Guide).

To diagnose the Type 3542 storage system, use the following diagnostic tools:

- Storage management software
- Checking LEDs
Monitoring status through software

Use the storage management software to monitor the status of the storage server. Run the software constantly, and check it frequently.

The storage management software provides the best way to diagnose and repair storage server failures. The software can help you:

- Determine the nature of the failure
- Locate the failed component
- Determine the recovery procedures to repair the failure

Although the storage server has fault LEDs, these lights do not necessarily indicate which component failed or needs to be replaced, or which type of recovery procedure that you must perform. In some cases (such as loss of redundancy in various components), the fault LED does not turn on. Only the storage management software can detect the failure.

For example, the recovery procedure for a Predictive Failure Analysis® (PFA) flag (impending drive failure) on a drive varies depending on the drive status (hot spare, unassigned, RAID level, current logical drive status, and so on). Depending on the circumstances, a PFA flag on a drive can indicate a high risk of data loss (if the drive is in a RAID 0 volume) or a minimal risk (if the drive is unassigned). Only the storage management software can identify the risk level and provide the necessary recovery procedures.

Note: For PFA flags, the General-system-error LED and Drive fault LEDs do not turn on, so checking the LEDs will not notify you of the failure, even if the risk of data loss is high.

Recovering from a storage server failure might require you to perform procedures other than replacing the component (such as backing up the logical drive or failing a drive before removing it). The storage management software gives these procedures.

Attention: Not following the software-recovery procedures can result in data loss.

Checking the LEDs

The LEDs display the status of the storage server and components. Green LEDs indicate a normal operating status; amber LEDs indicate a possible failure.

It is important to check all the LEDs on the front and back of the storage server when you turn on the power. In addition to checking for faults, you can use the LEDs on the front of the storage server to determine whether the drives are responding to I/O transmissions from the host.
Storage server LEDs (front)

Figure 27. FASTT200 and FASTT200 HA storage server LEDs (front)

Table 19. FASTT200 and FASTT200 HA storage server LEDs (front)

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>Operating states</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive active</td>
<td>Green</td>
<td>• On - Normal operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Flashing - The drive is reading or writing data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Off - One of the following situations has occurred:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The storage server has no power.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The storage subsystem has no power.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The drive is not properly seated in the storage server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The drive has not spun up.</td>
</tr>
<tr>
<td>Drive fault</td>
<td>Amber</td>
<td>• Off - Normal operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Flashing - The storage management software is locating a drive, logical drive, or storage subsystem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• On - The drive failed, or a user failed the drive.</td>
</tr>
<tr>
<td>Power</td>
<td>Green</td>
<td>• On - Normal operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Off - One of the following situations has occurred:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The storage server has no power.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The storage subsystem has no power.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The power supply failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– There is an overtemperature condition.</td>
</tr>
<tr>
<td>General-system-error</td>
<td>Amber</td>
<td>• Off - Normal operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• On - A storage server component failed.</td>
</tr>
</tbody>
</table>

1 Always use the storage management software to identify the failure.

2 Not all component failures turn on this LED. For more information, see “Monitoring status through software” on page 40.
Table 20. FASTT200 and FASTT200 HA storage server RAID controller LEDs

<table>
<thead>
<tr>
<th>Icon</th>
<th>LED</th>
<th>Color</th>
<th>Operating states</th>
</tr>
</thead>
</table>
| Fault | Amber | • Off - Normal operation
| | | • On - The RAID controller failed. |
| Host loop | Green | • On - Normal operation
| | | • Off - One of the following situations has occurred:
| | | - The host loop is down, not turned on, or not connected.
| | | - A GBIC failed, or the host port is not occupied.
| | | - The RAID controller circuitry failed, or the RAID controller has no power. |
| Cache active | Green | • On - There is data in the RAID controller cache.
| | | • Off - One of the following situations has occurred:
| | | - There is no data in cache.
| | | - There are no cache options selected for this array.
| | | - The cache memory failed, or the battery failed. |
| Battery | Green | • On - Normal operation
| | | • Flashing - The battery is recharging or performing a self-test.
| | | • Off - The battery or battery charger failed. |
| Expansion port bypass | Amber | • Off - Normal operation
| | | • On - One of the following situations has occurred:
| | | - The expansion port is not occupied.
| | | - The fibre channel cable is not attached to an expansion unit.
| | | - The attached expansion unit is not turned on.
| | | - A GBIC failed, a fibre channel cable failed, or a GBIC failed on the attached expansion unit. |
| Expansion loop | Green | • On - Normal operation
| | | • Off - The RAID controller circuitry failed, or the RAID controller has no power. |
Table 20. FASTT200 and FASTT200 HA storage server RAID controller LEDs (continued)

<table>
<thead>
<tr>
<th>Icon</th>
<th>LED</th>
<th>Color</th>
<th>Operating states¹</th>
</tr>
</thead>
</table>
| No icon | 10BT| Green | • If the Ethernet connection is 10BASE-T: The 10BT LED is on, 100BT LED flashes faintly.
| | | | • If the Ethernet connection is 100BASE-T: The 10BT LED is off, 100BT LED is on.
| No icon | 100BT| | • If there is no Ethernet connection: Both LEDs are off. |

¹ Always use the storage management software to identify the failure.

Fan and power supply LEDs

![FastT200 and FastT200 HA fan and power supply LEDs]

Table 21. FASTT200 and FASTT200 HA fan LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>Operating states¹</th>
</tr>
</thead>
</table>
| Fault | Amber | • Off - Normal operation
| | | • On - The fan CRU failed. |

¹ Always use the storage management software to identify the failure.

Table 22. FASTT200 and FASTT200 HA power supply LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>Operating states¹</th>
</tr>
</thead>
</table>
| Fault | Amber | • Off - Normal operation
| | | • On - One of the following situations has occurred:
| | | – The power supply failed.
| | | – An overtemperature condition has occurred.
| | | – The power supply is turned off. |
| Power | Green | • On - Normal operation
| | | • Off - One of the following situations has occurred:
| | | – The power supply is disconnected.
| | | – The power supply is seated incorrectly.
| | | – The storage server has no power. |

¹ Always use the storage management software to identify the failure.
Symptom-to-FRU index

Use the storage management software to diagnose and repair controller unit failures. Use Table 23 also to find solutions to problems that have definite symptoms.

See the PD maps in the IBM TotalStorage DS4000 Problem Determination Guide for more detailed procedures for problem isolation.

Table 23. Symptom-to-FRU index for FASTT200 and FASTT200 HA Type 3542 controller

<table>
<thead>
<tr>
<th>Problem Indicator</th>
<th>Action/FRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amber LED on - Drive CRU</td>
<td>1. Replace the drive that failed.</td>
</tr>
<tr>
<td>Amber LED on - Fan CRU</td>
<td>1. Replace the fan that failed.</td>
</tr>
<tr>
<td>Amber LED on - RAID controller Fault LED</td>
<td>1. If the RAID controller Fault LED is lit, replace the RAID controller.</td>
</tr>
</tbody>
</table>
| Amber LED on - Expansion port Bypass LED | 1. No corrective action needed if system is properly configured and no attached expansion units.
2. Reattach the GBICs and fibre channel cables. Replace input and output GBICs or cables as necessary.
3. Expansion unit |
| Amber LED on - Front panel | 1. Indicates that a Fault LED somewhere on the storage server has turned on. (Check for amber LEDs on CRUs). |
| Amber LED on and green LED off - Power supply CRU | 1. Turn on all power supply power switches.
2. Check ac power. |
| Amber and green LEDs on - Power-supply CRU | 1. Replace the failed power-supply CRU. |
| All green LEDs off - All CRUs | 1. Check that all storage server power cords are plugged in and the power switches are on
2. Check that the main circuit breakers for the rack are turned on.
3. Power supply
4. Midplane |
| Amber LED flashing - Drive CRUs | 1. No corrective action is needed. (Drive rebuild or identity is in process.) |
| One or more green LEDs off - Power supply CRUs | 1. Make sure that the power cord is plugged in and the power-supply switches are turned on. |
| One or more green LEDs off - All drive CRUs | 1. Midplane |
| One or more green LEDs off - Front panel | 1. Make sure that the cords are plugged in and power supplies are turned on.
2. Midplane |
| One or more green LEDs off - Battery | 1. Battery |
| One or more green LEDs off - Cache active | 1. Use the storage management software to enable the cache.
2. RAID controller
3. Battery |
<table>
<thead>
<tr>
<th>Symptom Description</th>
<th>Possible Causes</th>
</tr>
</thead>
</table>
| One or more green LEDs off - Host Loop | 1. Check if host managed hub or switch is on. Replace attached devices that have failed.
2. Fibre channel cables
3. GBIC
4. RAID controller |
| One or more green LEDs off - Expansion Loop | 1. Ensure drives are properly seated.
2. RAID controller
3. Drive
4. GBIC or fibre channel cable |
| Intermittent or sporadic power loss to the storage server - Some or all CRUs | 1. Check the ac power source.
2. Reseat all installed power cables and power supplies.
3. Replace defective power cords.
4. Check for a Fault LED on the power supply, and replace the failed CRU.
5. Midplane |
| Unable to access drives on Drives and fibre channel loop | 1. Ensure that the fibre channel cables are undamaged and properly connected.
2. RAID controller |
| Random errors on Subsystem | 1. Midplane |
| The Storage Manager client Enterprise Management window sees each storage server controller as an independent storage subsystem. | No drives are present in the storage server. Ensure that at least one drive is present in the storage server so that it can be configured properly. |
| | One controller was replaced incorrectly. The controller firmware versions probably failed to synchronize correctly. To recover, perform the following steps:
1. Remove and reinsert the controller blade.
2. Wait 5 minutes.
3. Delete the controller entry with the incorrect firmware version from the DS4000 Storage Manager Enterprise Management window.
4. Add the controller back to the DS4000 Storage Manager Enterprise Management window using the Add Device menu option in the Enterprise Management window.
5. If the Storage Manager client Enterprise Management window still shows each storage server controller as an independent storage subsystem or a partially managed device, repeat this procedure. If the problem still persists, contact IBM support. |

Note: If you cannot find the problem in Table 23 on page 44, test the entire system.

Parts listing

Figure 30 on page 46 and the following table provide a parts listing for the FASTT200 and FASTT200 HA controllers.
This parts listing supports the following models: 1RU, 1RX, 2RU, and 2RX.

<table>
<thead>
<tr>
<th>Index</th>
<th>Type 3542- IBM FASTT200 and FASTT200 HA storage servers</th>
<th>FRU No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DASD Bezel Filler Asm (all models)</td>
<td>37L0198</td>
</tr>
<tr>
<td>2</td>
<td>Decorative Bezel (all models)</td>
<td>09N7307</td>
</tr>
<tr>
<td>3</td>
<td>Power Supply Asm (350 W) (all models)</td>
<td>19K1164</td>
</tr>
<tr>
<td>4</td>
<td>Blank, controller (model 1RU, 1RX)</td>
<td>19K1229</td>
</tr>
<tr>
<td>5</td>
<td>Blower Asm (all models)</td>
<td>09N7285</td>
</tr>
<tr>
<td>6</td>
<td>FC Controller, (all models)</td>
<td>19K1115</td>
</tr>
<tr>
<td>7</td>
<td>Rail Kit Left/Right (all models)</td>
<td>37L0067</td>
</tr>
<tr>
<td>8</td>
<td>Midplane/Frame (all models)</td>
<td>19K1220</td>
</tr>
<tr>
<td></td>
<td>Misc. Hardware Kit (all models)</td>
<td>09N7288</td>
</tr>
<tr>
<td></td>
<td>Short Wave GBIC (all models)</td>
<td>03K9206</td>
</tr>
<tr>
<td></td>
<td>Long Wave GBIC (all models)</td>
<td>03K9208</td>
</tr>
<tr>
<td></td>
<td>Cable, 5M Optical (all models)</td>
<td>03K9202</td>
</tr>
<tr>
<td></td>
<td>Cable, 25M Optical (all models)</td>
<td>03K9204</td>
</tr>
<tr>
<td></td>
<td>Cable, Serial (all models)</td>
<td>19K1179</td>
</tr>
<tr>
<td></td>
<td>Cable, 1M Optical (all models)</td>
<td>37L0083</td>
</tr>
<tr>
<td></td>
<td>9’ Line Cord (all models)</td>
<td>6952300</td>
</tr>
<tr>
<td></td>
<td>Battery, Cache (all models)</td>
<td>19K1219</td>
</tr>
<tr>
<td></td>
<td>Line Cord Jumper, High Voltage (model 1RX, 2RX)</td>
<td>36L8886</td>
</tr>
</tbody>
</table>

"Power cords," on page 135 lists required power cords for the DS4000 storage components discussed in this document by country and region.
Chapter 8. Type 3552 FASTT500 RAID Controller

The IBM FASTT500 RAID controller is compatible with the following IBM products:

- IBM FAST EXP500 storage expansion unit (see Chapter 13 on page 111)
- Type 2109 Series fibre channel switches
- Type 2005 Series fibre channel switches
- Type 3534-F08 fibre channel switch
- DS4000 FC2-66 host bus adapter (FRU 19K1247)
- DS4000 FC2-133 host bus adapter (FRU 24P0962) (see Chapter 5 on page 17)

General checkout

Use the indicator lights and the “Symptom-to-FRU index” on page 57 to diagnose problems.

Note: The PD maps found in the IBM TotalStorage DS4000 Problem Determination Guide provide you with additional diagnostic aids.

Checking the indicator lights

The controller unit indicator lights (see Figure 31 on page 48) display the status of the controller unit and its components. Green indicator lights mean normal operating status; amber indicator lights mean a possible failure.

It is important that you check all the indicator lights on the front and back of the controller unit when you turn on the power. After you turn on the power, the indicator lights might blink intermittently. Wait until the controller unit completes its power up before checking for faults. It can take up to 15 minutes for the battery to complete its self-test and up to 24 hours to fully charge, particularly after an unexpected power loss of more than a few minutes.

Perform the following steps to check the controller unit indicator lights and operating status.

1. To view the indicator lights, remove the controller unit bezel.
2. Check the indicator lights on the front of the controller unit.
3. Check the indicator lights on the back of the controller unit.
4. Check the indicator lights on the mini hubs.
5. If all indicator lights show a normal status, replace the bezel; otherwise, run the storage management software to diagnose and repair the problem.
Table 24. FASTT500 RAID controller indicator lights (front panel)

<table>
<thead>
<tr>
<th>Indicator light</th>
<th>Color</th>
<th>Normal Operation</th>
<th>Problem Indicator</th>
<th>Possible conditions suggested by the problem indicator (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component: controller CRU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Power | Green | On | Off | • No power to controller unit
• No power to storage subsystem
• Cables are loose or the switches are off
• Power supply failed, is missing, or is not fully seated
• Overtemperature condition |
| Fault | Amber | Off | On | Controller failure; controller fault condition |
| Heartbeat | Green | Blinking (2) | Not blinking (2) | No controller activity |
| Status (eight lights including Heartbeat) | Green | Various patterns depending on the condition | Various patterns depending on the condition | If the second, third, sixth, and seventh lights are on or if all eight lights are on, there is a memory fault that indicates that the controller CRU failed. |
| **Component: controller fan** | | | | |
| Power | Green | On | Off | • No power to controller unit
• No power to storage subsystem
• Cables are loose or the switches are off
• Power supply failed, is missing, or is not fully seated in controller unit
• Overtemperature condition |
| Power supply fault | Amber | Off | On | • Power supply failed
• Overtemperature
• Power supply is turned off, disconnected, or not fully seated in controller unit
• No power to controller unit or storage subsystem (all indicator lights are off) |
Table 24. FASTT500 RAID controller indicator lights (front panel) (continued)

<table>
<thead>
<tr>
<th>Indicator light</th>
<th>Color</th>
<th>Normal Operation</th>
<th>Problem Indicator</th>
<th>Possible conditions suggested by the problem indicator (1)</th>
</tr>
</thead>
</table>
| Controller fan fault | Amber | Off | On | • Controller fan failed
| | | | | • Fan and communications module is missing, unplugged, or failed
| | | | | • Circuity failure
| | | | | • Overtemperature condition |
| Controller fault | Amber | Off | On | Controller failed; one or more memory modules failed (SIMMs or DIMMs). |
| Fast write cache | Green | Steady or blinking (3) | Software dependent (3) | Normal operation is off if:
| | | | | • Cache is not enabled.
| | | | | • Battery is not ready. |

Component: battery

<table>
<thead>
<tr>
<th>Indicator light</th>
<th>Color</th>
<th>Normal Operation</th>
<th>Problem Indicator</th>
<th>Possible conditions suggested by the problem indicator (1)</th>
</tr>
</thead>
</table>
| Fault-A or Fault-B | Amber | Off | On | • Left or right battery bank failed.
| | | | | • Battery is either discharged or defective. |
| Full Charge-A or Full Charge-B | Green | On (4) | Off | • Left or right battery bank is not fully charged.
| | | | | • Power has been off for an extended period and has drained battery power.
| | | | | • Batteries are weak. |

1. Always use the storage management software to identify the failure.
2. There are eight status lights (the Heartbeat and seven others) that glow in various patterns, depending on the controller status.
3. The fast write cache indicator light is on when there is data in the cache and it blinks during a fast write operation.
4. If either Full Charge-A or Full Charge-B indicator light blink, the battery is in the process of charging.

More indicator lights are located on the back of the controller unit, as shown in Figure 32.

![Figure 32. FASTT500 RAID controller indicator lights (back panel)](image)

Figure 32. FASTT500 RAID controller indicator lights (back panel)

Table 25 on page 50 describes the back panel FASTT500 RAID controller indicator lights.
Table 25. FASıT500 RAID controller indicator lights (back panel)

<table>
<thead>
<tr>
<th>Indicator light</th>
<th>Color</th>
<th>Normal Operation</th>
<th>Problem Indicator</th>
<th>Possible conditions suggested by the problem indicator (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan and communications module</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan and communication fault</td>
<td>Amber</td>
<td>Off</td>
<td>On</td>
<td>• Fan and communications module failed or is installed incorrectly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Overtemperature condition</td>
</tr>
<tr>
<td>Power supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>Green</td>
<td>On</td>
<td>Off</td>
<td>• No power to controller unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• No power to storage subsystem</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Power supply failed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Overtemperature condition</td>
</tr>
</tbody>
</table>

1. Always use the storage management software to identify the failure.

The mini hub indicator lights on the back of the controller unit are shown in Figure 33.

![Mini-hub indicator lights](image)

Figure 33. FASıT500 RAID controller mini hub indicator lights

Table 26 on page 51 describes the mini hub indicator lights.
Table 26. FASiT500 RAID controller mini hub indicator lights

<table>
<thead>
<tr>
<th>Icon</th>
<th>Indicator light</th>
<th>Color</th>
<th>Normal Operation</th>
<th>Problem Indicator</th>
<th>Possible conditions suggested by the problem indicator</th>
</tr>
</thead>
</table>
| ![Fault Icon] | Fault | Amber | Off | On | Mini hub or GBIC failed.
Note: If a host-side mini hub is not connected to a controller, this fault light is always on. |
| ![Bypass (Upper Port) Icon] | Bypass (upper port) | Amber | Off | On |
- Upper mini hub port is bypassed.
- Mini hub or GBIC failed, is loose, or is missing.
- Fiber-optic cables are damaged.
Note: If the port is unoccupied, the light is on. |
| ![Loop Good Icon] | Loop good | Green | On | Off |
- The loop is not operational.
- Mini hub failed or a faulty device might be connected to the mini hub.
- Controller failed.
Note: If a host-side mini hub is not connected to a controller, the green light is always off and the fault light is always on. |
| ![Bypass (Lower Port) Icon] | Bypass (lower port) | Amber | Off | On |
- Lower mini hub port is bypassed.
- Mini hub or GBIC failed, is loose, or is missing.
- Fiber-optic cables are damaged.
Note: If the port is unoccupied, the light is on. |
| ![Fault Icon] | Fault | Amber | Off | On | Mini hub or GBIC failed.
Note: If a drive-side mini hub is not connected to a controller, this fault light is always on. |
| ![Bypass (Upper Port) Icon] | Bypass (upper port) | Amber | Off | On |
- Upper mini hub port is bypassed.
- Mini hub or GBIC failed, is loose, or is missing.
- Fiber-optic cables are damaged.
Note: If the port is unoccupied, the light is on. |
| ![Loop Good Icon] | Loop good | Green | On | Off |
- The loop is not operational.
- Mini hub failed or a faulty device might be connected to the mini hub.
- Drive failed.
Note: If a drive-side mini hub is not connected to a controller, the green light is always off and the fault light is always on. |
| ![Bypass (Lower Port) Icon] | Bypass (lower port) | Amber | Off | On |
- Lower mini hub port is bypassed.
- Mini hub or GBIC failed, is loose, or is missing.
- Fiber-optic cables are damaged.
Note: If the port is unoccupied, the light is on. |
Tested configurations

The following configurations (shown in Figure 34 through Figure 44 on page 57) are for the IBM FASTT500 RAID controller.

Basic Configuration

![Diagram of Basic Configuration](image)

Note 1: Adapters can be in the same or different systems

Note 2: Redundant drive loops are shown and required

Note 3: Mini-hubs in dashes are options

Note 4: For dual redundant loops connect to the optional set of mini-hubs shown as dashed on the drive side

Figure 34. FASiT500 RAID controller basic configuration

Simple Fully Redundant

![Diagram of Simple Fully Redundant Configuration](image)

Figure 35. FASiT500 RAID controller simple fully redundant
Cluster/Non-Cluster Share

Note: Factors such as performance and number of storage partitions influence the number and type of nodes.

Figure 36. FASiT500 RAID controller cluster/non-cluster share

Multi-MSCS No External Hubs

Note: 2 partitions shown; Clus 1 partition separate from Clus 2 partition
LD is a logical drive

Figure 37. FASiT500 RAID controller multi-MSCS no external hubs
Multi-MSCS extended

Notes:
- Each group of 4 ports on the switches (red dash box) can support one cluster element (black dash box)
- Storage partitioning is used to separate clusters
- 16 port switches allow more clusters but this has to be within performance needs and available partitions

Figure 38. FASit500 RAID controller multi-MSCS extended

Cornhusker configuration

Notes: Running Cornhusker Software
- Managed hubs can be combined with optional mini-hubs or use 16 port switches without the optional mini-hubs
- Performance would be best with external 16 port switches

Figure 39. FASit500 RAID controller cornhusker configuration
Base Storage Partitions

Figure 40. FASiT500 RAID controller basic storage partitions

Capacity Configuration

Figure 41. FASiT500 RAID controller capacity configuration
Capacity Configuration - host detail

Figure 42. FASiT500 RAID controller capacity configuration host detail

SAN - Using Partitions of Clusters

Figure 43. FASiT500 RAID controller SAN - Using partitions of clusters
Symptom-to-FRU index

The Symptom-to-FRU index (Table 27) lists symptoms and the possible causes. The most likely cause is listed first.

The PD maps found in the IBM TotalStorage DS4000 Problem Determination Guide also provide you with additional diagnostic aids.

Note: Do not look directly into any fiber cable or GBIC optical output. To view an optical signal, use a mirror to view the reflected light.

Table 27. Symptom-to-FRU index for FASit500 RAID controller

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action/FRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller LED (front cover) is on.</td>
<td>1. Reseat Controller CRU.</td>
</tr>
<tr>
<td></td>
<td>2. Place Controller online using DS4000 Storage Manager GUI.</td>
</tr>
<tr>
<td></td>
<td>3. If in passive mode, check Fibre path/GBIC.</td>
</tr>
<tr>
<td></td>
<td>4. Controller CRU</td>
</tr>
<tr>
<td>Software issued a controller error message.</td>
<td>1. Check Controller Fan</td>
</tr>
<tr>
<td></td>
<td>2. Controller CRU</td>
</tr>
<tr>
<td>Software errors occur when attempting to access controllers or drives.</td>
<td>1. Check appropriate software and documentation to make sure the system is set up correctly and the proper command was run.</td>
</tr>
<tr>
<td></td>
<td>2. Power to the Controller</td>
</tr>
<tr>
<td></td>
<td>3. Interface cables</td>
</tr>
<tr>
<td></td>
<td>4. ID settings</td>
</tr>
<tr>
<td></td>
<td>5. Controller</td>
</tr>
<tr>
<td></td>
<td>6. Drive</td>
</tr>
<tr>
<td></td>
<td>7. Controller backpanel</td>
</tr>
</tbody>
</table>
Table 27. Symptom-to-FRU index for FASiT500 RAID controller (continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action/FRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan LED (front cover) is on.</td>
<td>1. Power supply fan CRU</td>
</tr>
<tr>
<td></td>
<td>2. Controller fan CRU</td>
</tr>
<tr>
<td>Controller and Fan fault LEDs (front cover) are on.</td>
<td>1. Check both Fan and Controller CRUs for fault LED and replace faulty CRU.</td>
</tr>
<tr>
<td>Fault-A or Fault-B LED (battery CRU) is on.</td>
<td>1. Battery CRU</td>
</tr>
<tr>
<td>Full Charge-A or Full Charge-B LED (battery CRU) is off.</td>
<td>1. Power-on Controller and allow batteries to charge for 24 hours until the Full Charge LEDs are on.</td>
</tr>
<tr>
<td></td>
<td>2. Battery CRU</td>
</tr>
<tr>
<td></td>
<td>3. Both power supplies</td>
</tr>
<tr>
<td>No power to controller (all power LEDs off).</td>
<td>1. Check power switches and power cords.</td>
</tr>
<tr>
<td></td>
<td>2. Power supplies</td>
</tr>
<tr>
<td>Power Supply LED is off.</td>
<td>1. Check and reseat power supply.</td>
</tr>
<tr>
<td></td>
<td>2. Check for overheating. Wait ten minutes for the power supply CRU to cool down.</td>
</tr>
<tr>
<td></td>
<td>3. Power supply CRU</td>
</tr>
<tr>
<td>Power Supply CRUs LED are on, but all other CRU LEDs are off.</td>
<td>1. DC power harness</td>
</tr>
<tr>
<td>The Storage Manager client Enterprise Management window sees each storage server controller as an independent storage subsystem.</td>
<td>No drives are present in the storage server. Ensure that at least one drive is present in the storage server so that it can be configured properly.</td>
</tr>
<tr>
<td></td>
<td>One controller was replaced incorrectly. The controller firmware versions probably failed to synchronize correctly. To recover, perform the following steps:</td>
</tr>
<tr>
<td></td>
<td>1. Remove and reinsert the controller blade.</td>
</tr>
<tr>
<td></td>
<td>2. Wait 5 minutes.</td>
</tr>
<tr>
<td></td>
<td>3. Delete the controller entry with the incorrect firmware version from the DS4000 Storage Manager Enterprise Management window.</td>
</tr>
<tr>
<td></td>
<td>4. Add the controller back to the DS4000 Storage Manager Enterprise Management window using the Add Device menu option in the Enterprise Management window.</td>
</tr>
<tr>
<td></td>
<td>5. If the Storage Manager client Enterprise Management window still shows each storage server controller as an independent storage subsystem or a partially managed device, repeat this procedure. If the problem still persists, contact IBM support.</td>
</tr>
</tbody>
</table>

Parts listing

Figure 45 on page 59 and the following table provide a parts listing for the FASiT500 RAID controller.
Figure 45. FASTT500 RAID controller parts listing

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
<th>FRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>175-W Power Supply</td>
<td>01K6743</td>
</tr>
<tr>
<td>2</td>
<td>Mini Hub Card Assembly</td>
<td>37L0096</td>
</tr>
<tr>
<td>3</td>
<td>Optical Cable - 1 Meter</td>
<td>37L0083</td>
</tr>
<tr>
<td>3</td>
<td>Optical Cable - 5 Meters</td>
<td>03K9202</td>
</tr>
<tr>
<td>3</td>
<td>Optical Cable - 25 Meters</td>
<td>03K9204</td>
</tr>
<tr>
<td>4</td>
<td>Short Wave GBIC</td>
<td>03K9206</td>
</tr>
<tr>
<td>4</td>
<td>Long Wave GBIC</td>
<td>03K9208</td>
</tr>
<tr>
<td>5</td>
<td>Frame Assembly with Midplane</td>
<td>37L0093</td>
</tr>
<tr>
<td>6</td>
<td>RAID Controller</td>
<td>37L0098</td>
</tr>
<tr>
<td>7</td>
<td>Battery Backup Assembly</td>
<td>24P0953</td>
</tr>
<tr>
<td>8</td>
<td>Bezel Assembly</td>
<td>10L7043</td>
</tr>
<tr>
<td>9</td>
<td>Front Fan Assembly (Controller CRU Fan)</td>
<td>37L0094</td>
</tr>
<tr>
<td>10</td>
<td>Rear Fan Assembly</td>
<td>37L0102</td>
</tr>
<tr>
<td></td>
<td>256 MB DIMM</td>
<td>37L0095</td>
</tr>
<tr>
<td></td>
<td>Battery Cable</td>
<td>03K9285</td>
</tr>
<tr>
<td></td>
<td>Blank Mini Hub Canister</td>
<td>37L0100</td>
</tr>
<tr>
<td></td>
<td>Line Cord Jumper, High Voltage</td>
<td>36L8886</td>
</tr>
<tr>
<td></td>
<td>Power Cable</td>
<td>37L0101</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous Hardware Kit</td>
<td>24P0954</td>
</tr>
<tr>
<td></td>
<td>Rail Kit</td>
<td>37L0085</td>
</tr>
<tr>
<td></td>
<td>Line Cord, US</td>
<td>6952300</td>
</tr>
</tbody>
</table>

Power cords, on page 135 lists required power cords for the DS4000 storage components discussed in this document by country and region.
Chapter 9. Type 1722 DS4300 Storage Server

The following chapter covers basic hardware maintenance information for the Type 1722 DS4300 storage server. For more detailed information on the installation and use of the DS4300 storage server, refer to the IBM TotalStorage DS4300 Storage Server Installation and User’s Guide.

Note: The problem determination maps found in the IBM TotalStorage DS4000 Problem Determination Guide provide you with additional diagnostic aids.

The Type 1722 DS4300 storage servers are compatible with the following IBM products:
• IBM DS4000 EXP700 and DS4000 EXP710 (only the DS4300 with Turbo option can connect to the DS4000 EXP710)

Note: There are no expansion ports on the Type 1722 DS4300 model 6LU and 6LX storage servers.
• IBM DS4000 EXP100

The DS4000 controller firmware version 05.41.xx.xx enables DS4300 storage server support for the DS4000 EXP100. However, it recommended that you upgrade the DS4300 storage server controller firmware to the latest version available (06.11.xx.xx or higher).

Important: The DS4300 with Turbo storage server currently supports the concurrent attachment, or intermixing, of fibre channel and Serial ATA storage expansion units in a single DS4300 with Turbo storage server configuration. To enable FC/SATA intermixing with the DS4300 with Turbo storage server, you must purchase the FC/SATA Intermix premium feature and perform the required DS4000 Storage Manager and firmware upgrades to support FC/SATA intermixing.

Check with your IBM support representative for additional DS4300 model support for FC/SATA intermixing in the future.
• DS4000 FC2-66 host bus adapter (FRU 19K1247)
• IBM DS4000 FC2-133 host bus adapter (FRU 24P0962) (see Chapter 5 on page 17)
• Type 3534-F08 fibre channel switch
• Type 2109 Series fibre channel switches
• Type 2005 Series fibre channel switches

For the latest list of compatible devices, see the ServerProven® Web site at: www.pc.ibm.com/us/compat/nos/cert.shtml
General checkout

Important:
To ensure proper operation when you connect an EXP100 expansion unit to a DS4300 storage server, you must perform the required software and firmware support code upgrades to enable DS4300 support for the EXP100.

- Upgrade the DS4000 Storage Manager host software in the host servers and the management station to version 8.41 or later. (It is recommended that you update DS4000 Storage Manager to version 9.1.) See the IBM TotalStorage DS4000 Storage Manager Installation and Support Guide for your operating system.

- Upgrade the controller firmware and NVSRAM and the ESM firmware to the required levels. See the IBM TotalStorage DS4000 EXP100 Storage Expansion Unit Installation, User’s, and Maintenance Guide for firmware requirements and instructions on how to perform these upgrades.

Attention: Do not upgrade your controller firmware to version 5.41.5x.xx (or to version 6.11.xx.xx or higher) if your storage server is connected to an EXP100 with ESM firmware version 953x or earlier.

When the DS4300 storage server is connected to a DS4000 EXP100, the DS4300 must not have fibre channel drives inserted in its slots. When connected to a DS4000 EXP100, all the slots in the DS4300 storage server must have blank drive trays to ensure proper cooling.

Important: The DS4300 with Turbo storage server currently supports the concurrent attachment, or intermixing, of fibre channel and Serial ATA storage expansion units in a single DS4300 with Turbo storage server configuration. To enable FC/SATA intermixing with the DS4300 with Turbo storage server, you must purchase the FC/SATA Intermix premium feature and perform the required DS4000 Storage Manager and firmware upgrades to support FC/SATA intermixing.

Check with your IBM support representative for additional DS4300 model support for FC/SATA intermixing in the future.

Use the status LEDs, Symptom-to-FRU list, and the storage management software to diagnose problems. See “Monitoring status through software” on page 70 and “Checking the LEDs” on page 71.

To diagnose a cluster system, use the cluster problem determination procedure found in the IBM TotalStorage DS4000 Problem Determination Guide.

Note: If power was just applied to the controller unit, the green and amber LEDs might turn on and off intermittently. Wait until the controller unit finishes powering up before you begin to check for faults.

General information

There are two types of the DS4300 storage server, the Type 1722 model 60U and 60X dual-controller storage server and the Type 1722 model 6LU and 6LX single-controller storage server. The following section includes general information on the two types as well as the Turbo option.
DS4300 dual-controller storage server (models 60U and 60X)

The DS4300 dual-controller storage server (models 60U and 60X) comes with two RAID controllers, two power supplies, and two cooling units and provides dual, redundant controllers, redundant cooling, redundant power, and battery backup of the RAID controller cache.

The DS4300 model 60U and 60X storage server is designed to provide maximum host- and drive-side redundancy. Each RAID controller supports direct attachment of one host that contains one or two host adapters. By using external managed hubs and switches in conjunction with the storage server, you can build even larger configurations. (Throughout this document, the use of hub or external hub refers to a managed hub.)

Note: You must make fibre channel connections to both DS4300 controller blades on the DS4300 model 60U and 60X to ensure full host-side redundancy.

DS4300 dual-controller storage server (models 60U and 60X) with the Turbo option

The Turbo option consists of:

- Two 1-GB cache RAID controllers
- Storage Manager and firmware at 8.4 level
- License for connecting up to seven DS4000 EXP700 expansion units

DS4300 single-controller storage server (models 6LU and 6LX)

The DS4300 storage server Type 1722 Models 6LU and 6LX comes with one RAID controller, one power supply, and one cooling unit to provide efficient storage and retrieval capabilities.

DS4300 supports up to fourteen internal disk drive modules, supporting over 2 TB of storage capacity when using 146-GB drives. You can add additional storage to the DS4300 with up to seven DS4000 EXP700 expansion units using optional EXP700 Attachment features, as described in [Table 28](#).

The following list indicates the number of expansion units that each type of the DS4300 supports:

DS4300 model 6LU and 6LX

No expansion units

DS4300 model 60U and 60X

Three expansion units

DS4300 model 60U and 60X Turbo

Seven expansion units

Table 28. Additional storage features available for the DS4300 storage servers

<table>
<thead>
<tr>
<th>Expansion units</th>
<th>Number of drives</th>
<th>Feature number</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two EXP700 expansion units</td>
<td>15 to 42 drives</td>
<td>7360</td>
<td>24P8066</td>
</tr>
<tr>
<td>First additional EXP700 expansion unit</td>
<td>15 to 28 drives</td>
<td>7361</td>
<td>24P8169</td>
</tr>
<tr>
<td>Second additional EXP700 expansion unit</td>
<td>29 to 42 drives, can be purchased only after Feature number 7361</td>
<td>7362</td>
<td>24P8151</td>
</tr>
</tbody>
</table>

Chapter 9. Type 1722 DS4300 Storage Server 63
Table 28. Additional storage features available for the DS4300 storage servers (continued)

<table>
<thead>
<tr>
<th>Expansion units</th>
<th>Number of drives</th>
<th>Feature number</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third additional EXP700 expansion unit</td>
<td>43 to 56 drives, can be purchased only after Feature number 7362</td>
<td>7363</td>
<td>24P8183</td>
</tr>
<tr>
<td>Three EXP700 expansion units</td>
<td>15 to 56 drives</td>
<td>7368</td>
<td>24P8180</td>
</tr>
<tr>
<td>Seven EXP700 expansion units</td>
<td>15 to 112 drives</td>
<td>2000 (for the 1722–60U) or 2010 (for the 1722–60X)</td>
<td>24P8215 (for the 1722–60U) 24P8216 (for the 1722–60X)</td>
</tr>
<tr>
<td>Also includes 1-GB cache controller upgrade and Storage Manager 8.4 client and controller firmware.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Utilizing these features and with the 14 internal disk drive modules, up to 112 disk drives can be attached to the DS4300 Type model 60U and 60X with individual drive module capacities ranging from 36.4 to 146.8 GB.

Additional service information

This section provides additional service information about the DS4300 storage server.

Operating specifications

Table 29 on page 65 summarizes the operating specifications of the controller unit.
Table 29. DS4300 storage server operating specifications

<table>
<thead>
<tr>
<th>Size (with front panel and without mounting rails)</th>
<th>Environment</th>
<th>Acoustical noise emissions values</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Depth: 59.7 cm (23.6 in.)</td>
<td>• Air temperature:</td>
<td>For open bay (0 drives installed)</td>
</tr>
<tr>
<td>• Height: 13.2 cm (5.2 in.)</td>
<td>– Storage server on:</td>
<td>and typical system configurations (14 hard</td>
</tr>
<tr>
<td>• Width: 48 cm (18.9 in.)</td>
<td>10° to 35° C</td>
<td>disk drives installed):</td>
</tr>
<tr>
<td>Heat output</td>
<td>(50° to 95° F)</td>
<td>• Sound power (idling):</td>
</tr>
<tr>
<td>• 390 watts (1330 BTU/hr)</td>
<td>Altitude: 0 to 914 m (3000 ft.)</td>
<td>– 6.3 bels (open bay)</td>
</tr>
<tr>
<td>Weight</td>
<td>• Storage server on:</td>
<td>– 6.5 bels (typical)</td>
</tr>
<tr>
<td>• Standard storage server as shipped:</td>
<td>10° to 32° C</td>
<td>• Sound power (operating):</td>
</tr>
<tr>
<td>– Model 60U/60X: 39.10 kg (86.2 lb)</td>
<td>(50° to 90° F)</td>
<td>– 6.3 bels (open bay)</td>
</tr>
<tr>
<td>– Model 6LU/6LX: 34.34 kg (75.7 lb)</td>
<td>Altitude: 914 m (3000 ft.) to 2133 m (7000 ft.)</td>
<td></td>
</tr>
<tr>
<td>• Unit weight:</td>
<td>• Humidity:</td>
<td>– 6.8 bels (typical)</td>
</tr>
<tr>
<td>– Model 60U/60X: 31.48 kg (69.4 lb)</td>
<td>– 8% to 80%</td>
<td>• Sound pressure (idling):</td>
</tr>
<tr>
<td>– Model 6LU/6LX: 26.71 kg (58.9 lb)</td>
<td>– 47 dBA (open bay)</td>
<td>– 47 dBA (open bay)</td>
</tr>
<tr>
<td>Electrical input</td>
<td>– 49 dBA (typical)</td>
<td>– 53 dBA (typical)</td>
</tr>
<tr>
<td>• Sine-wave input (50 to 60 Hz) is required</td>
<td>• Sound pressure (operating):</td>
<td>These levels are measured in</td>
</tr>
<tr>
<td>• Input voltage:</td>
<td>– 47 dBA (open bay)</td>
<td>controlled acoustical environments</td>
</tr>
<tr>
<td>– Low range:</td>
<td>– 53 dBA (typical)</td>
<td>according to ISO 7779 and are</td>
</tr>
<tr>
<td>- Minimum: 90 V ac</td>
<td></td>
<td>reported in accordance with ISO 9296.</td>
</tr>
<tr>
<td>- Maximum: 136 V ac</td>
<td></td>
<td>The declared sound power levels</td>
</tr>
<tr>
<td>– High range:</td>
<td></td>
<td>indicate an upper limit, below</td>
</tr>
<tr>
<td>- Minimum: 198 V ac</td>
<td></td>
<td>which a large portion of machines</td>
</tr>
<tr>
<td>- Maximum: 264 V ac</td>
<td></td>
<td>operate. Sound pressure levels in</td>
</tr>
<tr>
<td>– Input kilovolt-amperes (kVA) approximately:</td>
<td></td>
<td>your location might exceed the</td>
</tr>
<tr>
<td>- Minimum configuration: 0.06 kVA</td>
<td></td>
<td>average 1-meter values stated</td>
</tr>
<tr>
<td>- Maximum configuration: 0.37 kVA</td>
<td></td>
<td>because of room reflections and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>other nearby noise.</td>
</tr>
</tbody>
</table>

Storage server components

The following sections show the components of the DS4300 storage server.

Note: The graphics used in this document are for illustrative purposes only. The appearance of the actual device may differ from the graphic.

All DS4300 storage server models support hot-swap fibre channel hard drive CRUs and cooling fan CRUs, so you can remove and replace these components without turning off the storage server. In addition, the DS4300 storage server models 60X and 60U support hot-swap power supplies and RAID controller CRUs.

Note: The DS4300 single-controller storage server (model 6LU and 6LX) has one power supply and one controller; therefore, you cannot hot swap these components.

Front view

Figure 46 on page 66 shows the components and controls on the front of the DS4300 storage server.
Note: The graphics used in this document are for illustrative purposes only. The appearance of the actual device may differ from the graphic.

Power-on LED
When on, this green light indicates that the unit has good dc power.

The DS4300 single-controller storage server (model 6LU and 6LX) has a single power supply therefore; when the power supply fails, the General-system-error LED and the Power-on LED are not lit.

General-system-error LED
When on, this amber LED indicates that the storage server has a fault, such as in a power supply, fan unit, or hard disk drive.

The DS4300 single-controller storage server (model 6LU and 6LX) has a single power supply therefore; when the power supply fails, the General-system-error LED and the Power-on LED are not lit.

Note: If the General-system-error LED is on continuously (not flashing), there is a problem with the storage server. Use the storage management software to diagnose and repair the problem. For more information, see “Checking the LEDs” on page 71.

Locator LED
When on, this blue light indicates the storage management software is locating the server.

Hot-swap drive CRU
You can install up to 14 hot-swap drive customer replaceable units (CRUs) in the storage server. Each drive CRU consists of a hard disk drive and tray.

Filler panel
The storage server comes without drives installed and contains filler panels in the unused drive bays. Before installing new drives, you must remove the filler panels and save them. Each of the 14 bays must always contain either a filler panel or a drive FRU. Each filler panel contains a filler piece for use with a slim drive.

Drive activity LED
Each drive CRU has a green Drive activity LED. When flashing, this green LED indicates drive activity. When on continuously, this green LED indicates that the drive is properly installed.
Drive fault LED
Each drive CRU has an amber Drive fault LED. When on, this amber LED indicates a drive failure. When flashing, this amber LED indicates that a drive identify is in progress.

Latch
This multipurpose blue latch releases or locks the drive CRU in place.

Tray handle
You can use this multipurpose handle to insert and remove a drive CRU in the bay.

For information on how to install and replace drive CRUs, see the IBM TotalStorage DS4300 Fibre Channel Storage Server Installation and User's Guide. For more information about the LEDs, see “Checking the LEDs” on page 71.

Back view
Figure 47 shows the components at the back of the DS4300 dual-controller storage server (model 60U and 60X).

![Diagram of DS4300 dual-controller storage server back view]

Figure 47. DS4300 dual-controller storage server (model 60U and 60X) back view

Figure 48 on page 68 shows the components at the back of the DS4300 single-controller storage server (model 6LU and 6LX).
Note: The graphics used in this document are for illustrative purposes only. The appearance of the actual device may differ from the graphic.

RAID controller
Each RAID controller contains three ports for SFP modules that connect to the fibre channel cables. Two of the ports, which are labeled Host 1 and Host 2, are used to connect to host servers. The third port, which is labeled Expansion and is available on the DS4300 model 60U and 60X only, is used to connect additional expansion units to the storage server.

Each RAID controller also contains a battery to maintain cache data in the event of a power failure. For more information, see "Cache memory and RAID controller battery" on page 74.

Note: The DS4300 single-controller storage server (model 6LU and 6LX) contains only one RAID controller.

Hot-swap fans
The storage server has two interchangeable hot-swap and redundant fan FRUs. Each fan FRU contains two fans. If one fan FRU fails, the second fan FRU continues to operate. Both fan FRUs must be installed to maintain proper cooling within your storage server, even if one fan FRU is not operational.

Note: The DS4300 single-controller storage server (model 6LU and 6LX) contains only one fan.

Hot-swap power supplies
The DS4300 dual-controller storage server (model 60U and 60X) comes with two hot-swap power supplies. Both power supplies must be installed to maintain proper cooling.

Note: The DS4300 single-controller storage server (model 6LU and 6LX) comes with one power supply. You must keep the second power supply cover on to maintain proper cooling.

Interface ports and switches
Figure 49 on page 69 shows the ports and switches on the back of the storage server.
For a similar view of the DS4300 model 6LU and 6LX, see Figure 48 on page 68.

RAID controller

Each RAID controller contains several connectors and LEDs. Each controller has two host ports and one expansion port for connecting the storage server to hosts or expansion units. You first insert SFPs into the ports and then connect the fibre channel cables.

Note: The DS4300 single-controller storage server (model 6LU and 6LX) contains only one RAID controller and does not contain any expansion ports.

Host ports

The host ports are used to connect a fibre channel cable from the host systems. You first insert an SFP into the port and then connect a fibre channel cable. The two host ports in each controller are independent. They are not connected in the controller module as they would be in a hub configuration.

Ethernet port

The Ethernet port is for an RJ-45 10BASE-T or 100BASE-T Ethernet connection. Use the Ethernet connection to directly manage storage subsystems.

Expansion port

The expansion port is used to connect additional expansion units to the RAID controllers. You first insert an SFP into the port and then connect a fibre channel cable.

Note: There are no expansion ports on the DS4300 single-controller storage server (model 6LU and 6LX).

Serial port

The serial port is used by service personnel to perform diagnostic operations on the RAID controller or controllers.
Tray ID switch
The Tray ID switch settings range from 0 through 7, and unique IDs ranging from 00 through 77 can be set.

Note: For controller firmware version 05.33.xx.xx, both host and expansion ports operate at 2 Gbps only. For controller firmware version 05.4x.xx.xx, the host ports can operate at either 1 or 2 Gbps (the expansion port speed is still locked at 2 Gbps only).

Diagnostics

To diagnose fibre channel problems, use FASTT MSJ (see the IBM TotalStorage DS4000 Problem Determination Guide).

To diagnose problems on the Type 1722 storage system, use the following diagnostic tools:
- Storage management software
- System LEDs

Monitoring status through software

Use the storage management software to monitor the status of the storage server. Run the software constantly, and check it frequently.

The storage management software provides the best way to diagnose and repair storage server failures. The software can help you:
- Determine the nature of the failure
- Locate the failed component
- Determine the recovery procedures to repair the failure

Although the storage server has fault LEDs, these lights do not necessarily indicate which component failed or needs to be replaced, or which type of recovery procedure you must perform. In some cases (such as loss of redundancy in various components), the fault LED does not turn on. Only the storage management software can detect the failure.

For example, the recovery procedure for an IBM Predictive Failure Analysis® (PFA) flag (impending drive failure) on a drive varies depending on the drive status (hot spare, unassigned, RAID level, current logical drive status, and so on). Depending on the circumstances, a PFA flag on a drive can indicate a high risk of data loss (if the drive is in a RAID 0 volume) or a minimal risk (if the drive is unassigned). Only the storage management software can identify the risk level and provide the necessary recovery procedures.

Note: For PFA flags, the General-system-error LED and Drive fault LEDs do not turn on, so checking the LEDs will not notify you of the failure, even if the risk of data loss is high.

Recovering from a storage server failure might require you to perform procedures other than replacing the component (such as backing up the logical drive or failing a drive before you remove it). The storage management software gives these procedures.

Attention: You might lose data if you do not follow the software recovery procedures.
Checking the LEDs

The LEDs display the status of the storage server and components. Green LEDs indicate a normal operating status; amber LEDs indicate a possible failure.

It is important to check all the LEDs on the front and back of the storage server when you turn on the power. In addition to checking for faults, you can use the LEDs on the front of the storage server to determine if the drives are responding to I/O transmissions from the host.

For information about the LEDs on the front of the storage server, see:
- Figure 50
- Table 30

For information about the LEDs on the back of the storage server, see:
- Figure 52 on page 74
- Table 31 on page 72
- Table 32 on page 74

Table 30. DS4300 storage server LEDs (front)

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>Operating states</th>
</tr>
</thead>
</table>
| Drive active | Green | • **On** - Normal operation
| | | • **Flashing** - The drive is reading or writing data.
| | | • **Flashing every 5 seconds** - The drive has not spun up.
| | | • **Off** - One of the following situations has occurred:
| | | – The storage server has no power.
| | | – The drive is not properly seated in the storage server.
| Drive fault | Amber | • **Off** - Normal operation
| | | • **Flashing** - The storage management software is locating a drive, logical drive, or storage subsystem.
| | | • **On** - The drive failed, or a user failed the drive.

Table 30. DS4300 storage server LEDs (front) (continued)

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>Operating states¹</th>
</tr>
</thead>
</table>
| Power | Green | • On - Normal operation
| | | • Off - One of the following situations has occurred:
| | | – The storage server has no power.
| | | – Both power supplies have failed.
| | | – There is an overtemperature condition.
| General-system-error| Amber | • Off - Normal operation
| | | • On - A storage server component failed.² |
| Locator | Blue | • On - When on, this blue light indicates the storage management software is locating the server.
| | | • Off - When off, the storage management software is not actively searching for the server. |

¹ Always use the storage management software to identify the failure.

² Not all component failures cause this LED to turn on.

Figure 51. DS4300 RAID controller LEDs

Table 31. DS4300 RAID controller LEDs

<table>
<thead>
<tr>
<th>Icon</th>
<th>LED</th>
<th>Color</th>
<th>Operating states¹</th>
</tr>
</thead>
</table>
| ![Fault icon] | Fault | Amber | • Off - Normal operation
| | | | • On - The RAID controller failed.
| ![Host loop icon] | Host loop | Green | • On - Normal operation
| | | | • Off - One of the following situations has occurred:
| | | | – The host loop is down, not turned on, or not connected.
| | | | – An SFP failed, or the host port is not occupied.
<p>| | | | – The RAID controller circuitry failed, or the RAID controller has no power. |</p>
<table>
<thead>
<tr>
<th>Icon</th>
<th>LED</th>
<th>Color</th>
<th>Operating states<sup>1</sup></th>
</tr>
</thead>
</table>
| ![Cache active icon] | Cache active | Green | - **On** - There is data in the RAID controller cache.
- **Off** - One of the following situations has occurred:
 - There is no data in the cache.
 - There are no cache options selected for this array.
 - The cache memory failed, or the battery failed. |
| ![Battery icon] | Battery | Green | - **On** - Normal operation
- **Flashing** - The battery is recharging or performing a self-test.
- **Off** - The battery or battery charger failed. |
| ![Expansion port bypass icon] | Expansion port bypass | Amber | - **Off** - Normal operation
- **On** - One of the following situations has occurred:
 - An SFP module is inserted in the drive loop port and the fibre channel cable is not attached to it.
 - The fibre channel cable is not attached to an expansion unit.
 - The attached expansion unit is not turned on.
 - An SFP failed, a fibre channel cable failed, or an SFP failed on the attached expansion unit. |
| ![Loop icon] | Loop | Green | - **On** - Normal operation
- **Off** - The RAID controller circuitry failed, or the RAID controller has no power. |
| No icon | 2 Gbps | Green | - **On** - Normal operation (host connection is at 2 Gbps)
- **Off** - Host connection is at 1 Gbps (which is not supported for controller firmware 05.33.xx.xx). |
| No icon | 10BT | Green | - If the Ethernet connection is 10BASE-T: The 10BT LED is on; the 100BT LED flashes faintly.
- If the Ethernet connection is 100BASE-T: The 10BT LED is off; the 100BT LED is on.
- If there is no Ethernet connection: Both LEDs are off. |
| No icon | 100BT | Green | |

¹ Always use the storage management software to identify the failure.
Table 32. DS4300 storage server fan LED

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>Operating states¹</th>
</tr>
</thead>
</table>
| Fault | Amber | • Off - Normal operation
 | | • On - The fan FRU failed. |

¹ Always use the storage management software to identify the failure.

Table 33. DS4300 storage server power supply LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>Operating states¹</th>
</tr>
</thead>
</table>
| Fault | Amber | • Off - Normal operation
 | | • On - One of the following situations has occurred:
 | | – The power supply failed.
 | | – An overtemperature condition has occurred.
 | | – The power supply is turned off. |
| Power | Green | • On - Normal operation
 | | • Off - One of the following situations has occurred:
 | | – The power supply is disconnected.
 | | – The power supply is seated incorrectly.
 | | – The storage server has no power. |

¹ Always use the storage management software to identify the failure.

Cache memory and RAID controller battery

Each RAID controller contains 128 MB of cache data. It also contains a rechargeable battery that maintains data in the cache in the event of a power failure. The following sections describe these features and their associated LEDs.

Cache memory

Cache memory is memory on the RAID controller that is used for intermediate storage of read and write data. Using cache memory can increase system performance. The data for a read operation from the host might be in the cache memory from a previous operation (thus eliminating the need to access the drive itself), and a write operation is completed when it is written to the cache, rather than to the drives.
See the storage management software documentation for information on how to set cache memory options.

The RAID controller has a Cache active LED that displays the current status of the cache. The LED is on if data is in the cache, and it is off if no data is in the cache.

If caching is enabled and the Cache active LED never comes on during I/O activity, it indicates that the cache memory failed or the battery failed (the green Battery LED will be off).

Note: Always use the storage management software to check your cache memory settings before you assume a hardware failure. On the DS4300 single-controller storage server (model 6LU/6LX), the RAID controller cache memory is used for storing read data only. The controller firmware ignores a “write-cache enabled” setting. This protects data in the event of a controller failure, which would cause the cache to be inaccessible.

Figure 53 shows the location of the Cache active LED on the front of the RAID controller.

![Cache active LED](image)

Figure 53. DS4300 storage server cache active LED

RAID controller cache battery

Each RAID controller contains a sealed, rechargeable 4-volt lead-acid battery. This battery provides cache backup for up to three days in the event of a power loss.

The service life of the battery is three years, after which time the battery must be replaced. See the storage management software for information on how to view and set the battery expiration date.

Important: The replacement RAID controller CRU does not come with a RAID controller cache battery installed, nor the mounting hardware that holds the battery in place inside the RAID controller. You must remove the cache battery that is inside the existing RAID controller that you are replacing, and install that battery inside the replacement RAID controller CRU, using the battery unit mounting hardware taken from the existing controller. On the DS4300 model 6LU/6LX, you will have to stop all I/O to the storage server before you replace the battery. The steps to remove and replace the battery are included in the IBM TotalStorage DS4300 Storage Server Installation and User’s Guide.

Each RAID controller has a green Battery LED on the back that indicates the following battery statuses:
- The LED is on and remains steady when the battery is fully charged.
• The LED flashes when the battery is charging or performing a self-test.
• The LED is off if the battery or the battery charger failed.

The battery performs a self-test at startup and every 25 hours thereafter (during which time the Battery LED flashes). If necessary, the battery begins recharging at that time. If the battery fails the self-test, the Battery LED turns off, indicating a battery fault.

Data caching starts after the battery completes the startup tests.

Figure 54 shows the location of the Battery LED on the front of the RAID controller.

![Battery LED](image)

Figure 54. DS4300 storage server battery LED

Using the diagnostic hardware

The DS4300 storage server comes with an LC wrap-plug adapter and LC-LC coupler. The wrap-plug adapter and LC-LC coupler are used to perform the loopback test and to identify fibre path problems. See the *IBM TotalStorage DS4000 Problem Determination Guide* for more information.

The loopback test and sendEcho test are described in the *IBM TotalStorage DS4000 Problem Determination Guide*. In the IBM TotalStorage SAN Integration Server configuration, a loopback adapter (p/n 17P6918) is included to identify path problems on the drive loop when using fibre channel 1.2-m copper cable (p/n 18P5237).

Symptom-to-FRU index

Use the storage management software to diagnose and repair controller unit failures. Use Table 34 on page 77 also to find solutions to problems that have definite symptoms.

Important: Before you replace any components, the DS4300 storage server subsystem profile and Event logs must be saved using the DS4000 storage management program. Perform the following steps to save the DS4300 storage server subsystem profile and Event logs:

1. Start the DS4000 storage management program and open a Subsystem Management window on the DS4000 storage server on which you want to replace the components.

2. Click View → Storage Subsystem Profile. The Subsystem Profile window opens. You will be prompted with a file name. Click Save As to save the profile.
3. To save the event logs, click **View + Event Log**. When the Event Log window opens, perform the following actions:
 a. Clear the View Only critical event box.
 b. Enter 8191 in the Retrieve most recent critical events box.
 c. Click **Update**. The window will refresh.
 d. Click **Select All**.
 e. You will be prompted with a file name. Click **Save As** to save the events.

See the problem determination maps in the *IBM TotalStorage DS4000 Problem Determination Guide* for more detailed procedures for problem isolation.

Table 34. Symptom-to-FRU index for DS4300 storage server

<table>
<thead>
<tr>
<th>Problem indicator</th>
<th>Action/FRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amber LED on - Front panel</td>
<td>1. General system error. Indicates that a Fault LED somewhere on the storage server has turned on. (Check for amber LEDs on FRUs). Use Storage Manager Software to help diagnose the problem.</td>
</tr>
<tr>
<td>Drive Fault Amber LED on - Drive FRU</td>
<td>1. Replace the drive that failed.</td>
</tr>
<tr>
<td>Fan Fault Amber LED on - Fan FRU</td>
<td>1. Replace the fan that failed.</td>
</tr>
</tbody>
</table>
| Amber LED on - RAID controller Fault LED | 1. If the RAID controller Fault LED is lit, do not replace the RAID controller until proper diagnosis made using DS4000 storage management software. The RAID controller Fault LED is lit because:
 • The controller Battery LED is not lit, the cache battery failed to keep its charge. Replace the battery.
 • The controller was placed offline. Use the storage management software to bring the controller back online.
 • The controller is not functional. Replace the controller. |
| Amber LED on - RAID controller Expansion port Bypass LED| 1. No corrective action is needed if the system is properly configured and there are no attached expansion units.
 2. Reattach the SFPs and fibre channel cables. Replace input and output SFPs or cables as necessary.
 3. Expansion unit is not turned on or has fault.
 4. Replace RAID controller if previous steps do not resolve the problem.
 Note: There is no Expansion Port Bypass LED on the DS4300 model 6LU and 6LX. |
| Power Supply Fault Amber LED on and power green LED off - Power supply FRU | 1. Turn on all power supply power switches.
 2. Check ac power. |
| Amber and green LEDs on - Power-supply FRU | 1. Replace the failed power-supply FRU. |
| All green LEDs off - All FRUs | 1. Check that all storage server power cords are plugged in and the power switches are on.
 2. Check that the main circuit breakers for the rack are turned on.
 3. Power supply
 4. Midplane |
<p>| Drive Fault Amber LED flashing - Drive FRUs | 1. No corrective action is needed. (Drive rebuild or identity is in process.) |
| One or more green LEDs off - Power supply FRUs | 1. Make sure that the power cord is plugged in and the power-supply switches are turned on. |
| One or more green LEDs off - All drive FRUs | 1. Midplane |</p>
<table>
<thead>
<tr>
<th>Issue Description</th>
<th>Possible Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>One or more green LEDs off - Front panel</td>
<td>1. Make sure that the cords are plugged in and power supplies are turned on.</td>
</tr>
<tr>
<td></td>
<td>2. Midplane</td>
</tr>
<tr>
<td>Green one or more LEDs off - Battery charging</td>
<td>1. Battery or battery charger failed.</td>
</tr>
<tr>
<td>One or more green LEDs off - Cache active</td>
<td>1. Use the storage management software to enable the cache or there is no data in the cache.</td>
</tr>
<tr>
<td></td>
<td>2. RAID controller</td>
</tr>
<tr>
<td></td>
<td>3. Battery</td>
</tr>
<tr>
<td>One or more green LEDs off - RAID controller Host Loop</td>
<td>1. Check if host managed hub or switch is on. Replace attached devices that failed.</td>
</tr>
<tr>
<td></td>
<td>2. Ensure that the server whose HBA ports are directly connected to the DS4300 server host port are power on and that the HBA driver is installed. Replace the HBA if it failed.</td>
</tr>
<tr>
<td></td>
<td>3. Fibre channel cables</td>
</tr>
<tr>
<td></td>
<td>4. SFP</td>
</tr>
<tr>
<td></td>
<td>5. RAID controller</td>
</tr>
<tr>
<td>One or more green LEDs off - RAID controller Loop</td>
<td>1. RAID controller</td>
</tr>
<tr>
<td></td>
<td>2. Drive</td>
</tr>
<tr>
<td></td>
<td>3. SFP or fibre channel cable</td>
</tr>
<tr>
<td>Intermittent or sporadic power loss to the storage server - Some or all FRUs</td>
<td>1. Check the ac power source.</td>
</tr>
<tr>
<td></td>
<td>2. Reseat all installed power cables and power supplies.</td>
</tr>
<tr>
<td></td>
<td>3. Replace defective power cords.</td>
</tr>
<tr>
<td></td>
<td>4. Check for a Fault LED on the power supply, and replace the failed FRU.</td>
</tr>
<tr>
<td></td>
<td>5. Check to determine if the operating environment temperature is too hot.</td>
</tr>
<tr>
<td></td>
<td>6. Midplane</td>
</tr>
<tr>
<td>Unable to access drives on Drives and fibre channel loop</td>
<td>1. Ensure that the fibre channel cables are undamaged and properly connected.</td>
</tr>
<tr>
<td></td>
<td>2. RAID controller</td>
</tr>
<tr>
<td></td>
<td>3. SFPs</td>
</tr>
<tr>
<td></td>
<td>4. Drive expansion enclosures are not powered on or are not working.</td>
</tr>
<tr>
<td></td>
<td>5. Drives are not functional (for example, the drives are bypassed)</td>
</tr>
<tr>
<td>Random errors on subsystem</td>
<td>1. Midplane</td>
</tr>
</tbody>
</table>
Table 34. Symptom-to-FRU index for DS4300 storage server (continued)

<table>
<thead>
<tr>
<th>The Storage Manager client Enterprise Management window sees each storage server controller as an independent storage subsystem.</th>
<th>No drives are present in the storage server. Ensure that at least one drive is present in the storage server so that it can be configured properly.</th>
</tr>
</thead>
<tbody>
<tr>
<td>One controller was replaced incorrectly. The controller firmware versions probably failed to synchronize correctly. To recover, perform the following steps:</td>
<td></td>
</tr>
<tr>
<td>1. Remove and reinsert the controller blade.</td>
<td></td>
</tr>
<tr>
<td>2. Wait 5 minutes.</td>
<td></td>
</tr>
<tr>
<td>3. Delete the controller entry with the incorrect firmware version from the DS4000 Storage Manager Enterprise Management window.</td>
<td></td>
</tr>
<tr>
<td>4. Add the controller back to the DS4000 Storage Manager Enterprise Management window using the Add Device menu option in the Enterprise Management window.</td>
<td></td>
</tr>
<tr>
<td>5. If the Storage Manager client Enterprise Management window still shows each storage server controller as an independent storage subsystem or a partially managed device, repeat this procedure. If the problem still persists, contact IBM support.</td>
<td></td>
</tr>
</tbody>
</table>

Note: If you cannot find the problem in the Symptom-to-FRU index, test the entire system.

Parts listing

[Figure 55] and the following table provide a parts listing for the DS4300 storage server.

<table>
<thead>
<tr>
<th>Index</th>
<th>Fibre channel Type 1722 DS4300 storage server</th>
<th>FRU No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rail Kit Left/Right</td>
<td>37L0067</td>
</tr>
<tr>
<td>2</td>
<td>Fan assembly</td>
<td>19K1293</td>
</tr>
<tr>
<td>Index</td>
<td>Fibre channel Type 1722 DS4300 storage server</td>
<td>FRU No.</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>3</td>
<td>Power Supply assembly (400 W)</td>
<td>19K1289</td>
</tr>
<tr>
<td>4</td>
<td>FC RAID Controller (base model, 256 MB cache, no battery)</td>
<td>24P8059 (24P8206)</td>
</tr>
<tr>
<td>4</td>
<td>FC RAID Controller (Turbo, 1 GB cache, no battery)</td>
<td>24P8225</td>
</tr>
<tr>
<td>4</td>
<td>FC RAID Controller (model 6LU/6LX single-controller, 1 GB cache, no battery)</td>
<td>24P8961</td>
</tr>
<tr>
<td>5</td>
<td>Midplane/frame (base model)</td>
<td>24P8129</td>
</tr>
<tr>
<td>5</td>
<td>Midplane/frame (model 6LU/6LX single-controller)</td>
<td>25R0107</td>
</tr>
<tr>
<td>6</td>
<td>Bezel assembly (DS4300)</td>
<td>25R0199</td>
</tr>
<tr>
<td>6</td>
<td>Bezel assembly (FAStT600)</td>
<td>24P8058</td>
</tr>
<tr>
<td>7</td>
<td>DASD Bezel Filler assembly</td>
<td>19K1291</td>
</tr>
<tr>
<td>8</td>
<td>Switch Harness</td>
<td>19K1297</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous Hardware Kit</td>
<td>09N7288</td>
</tr>
<tr>
<td></td>
<td>Battery bracket</td>
<td>25R0089</td>
</tr>
<tr>
<td></td>
<td>Short Wave SFP</td>
<td>19K1280</td>
</tr>
<tr>
<td></td>
<td>Long Wave SFP</td>
<td>19K1281</td>
</tr>
<tr>
<td></td>
<td>Cable, 5M Optical</td>
<td>19K1266</td>
</tr>
<tr>
<td></td>
<td>Cable, 25M Optical</td>
<td>19K1267</td>
</tr>
<tr>
<td></td>
<td>Cable, 1M Optical</td>
<td>19K1265</td>
</tr>
<tr>
<td></td>
<td>9' Line Cord</td>
<td>6952300</td>
</tr>
<tr>
<td></td>
<td>Battery, Cache</td>
<td>24P8062</td>
</tr>
<tr>
<td></td>
<td>Line Cord Jumper, High Voltage</td>
<td>36L8886</td>
</tr>
<tr>
<td></td>
<td>Cable, FRU SC-LC Adapter</td>
<td>19K1268</td>
</tr>
<tr>
<td></td>
<td>1.2-m FC copper cable (IBM TotalStorage SAN Integration Server only)</td>
<td>17P7508</td>
</tr>
<tr>
<td></td>
<td>Wrap plug (loopback adapter)</td>
<td>17P6918</td>
</tr>
</tbody>
</table>

“Power cords,” on page 135 lists required power cords for the DS4000 storage components discussed in this document by country and region.
Chapter 10. Type 1742 DS4400 Storage Server

The IBM DS4400 storage server provides dual, redundant controllers with fibre channel interfaces to both the host and drive loops. The DS4400 storage server has redundant cooling, redundant power, and battery backup of the controller cache.

The DS4400 storage server is compatible with the following IBM products:

- IBM FASiT EXP500 (see Chapter 13 on page 111)
- IBM DS4000 EXP700 and DS4000 EXP710
 The DS4000 controller firmware must be upgraded to version 05.21.xx.xx or later to enable DS4400 storage server support for the DS4000 EXP700.
 The DS4000 controller firmware must be upgraded to version 06.11.xx.xx or later to enable DS4400 storage server support for the DS4000 EXP710.
- IBM DS4000 EXP100
 The DS4000 controller firmware must be upgraded to version 06.11.xx.xx or later to enable DS4400 storage server support for the DS4000 EXP100.

Important: The DS4400 storage server currently supports the concurrent attachment, or intermixing, of fibre channel and Serial ATA storage expansion units in a single DS4400 storage server configuration. To enable FC/SATA intermixing with the DS4400 storage server, you must purchase the FC/SATA Intermix premium feature and perform the required DS4000 Storage Manager and firmware upgrades to support FC/SATA intermixing.

- DS4000 FC2-66 host bus adapter (FRU 19K1247)
- DS4000 FC2-133 host bus adapter (FRU 24P0962) (see Chapter 5 on page 17)
- Type 3534-F08 fibre channel switch
- Type 2109 Series fibre channel switches
- Type 2005 Series fibre channel switches

Designed to provide maximum host and drive-side redundancy, the DS4400 storage server supports direct attachment of up to four hosts that contain two host adapters each. Using external fibre channel managed hubs and switches in conjunction with the DS4400 storage server, you can attach up to 64 hosts with two adapters each to a DS4400 storage server.

General checkout

Use the indicator lights and the Symptom-to-FRU index to diagnose problems.

The PD maps found in the *IBM TotalStorage DS4000 Problem Determination Guide* provide you with additional diagnostic aids.

Checking the indicator lights

The DS4400 storage server indicator lights display the status of the DS4400 storage server and its components. Green indicator lights mean normal operating status; amber indicator lights mean a possible failure.

It is important that you check all the indicator lights on the front and back of the controller unit after you turn on the power. After you turn on the power, the indicator lights might blink intermittently. Wait until the DS4400 storage server
completes its power up before you check for faults. It can take up to 15 minutes for the battery to complete its self-test and up to 24 hours to fully charge, particularly after an unexpected power loss of more than a few minutes.

The indicator lights for the components of the DS4400 storage server are described in the following sections.

Storage server indicator lights
The storage server has five indicator lights, as shown in Figure 56. To view the storage server indicator lights, you do not have to remove the DS4400 storage server bezel.

Figure 56. DS4400 storage server indicator lights

Table 35 describes the storage server indicator lights.

<table>
<thead>
<tr>
<th>Indicator light</th>
<th>Color</th>
<th>Normal operation</th>
<th>Problem indicator</th>
<th>Possible conditions suggested by the problem indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Green</td>
<td>On</td>
<td>Off</td>
<td>• No power to DS4400 storage server
• No power to storage subsystem
• Cables are loose or the switches are off
• Power supply failed, is missing, or is not fully seated in DS4400 storage server
• Overtemperature condition</td>
</tr>
<tr>
<td>Power supply fault</td>
<td>Amber</td>
<td>Off</td>
<td>On</td>
<td>• Power supply failed or if the Power supply is turned off, disconnected, or not fully seated in DS4400 storage server
• Overtemperature
• No power to DS4400 storage server or storage subsystem (all indicator lights are off)</td>
</tr>
</tbody>
</table>
Table 35. DS4400 storage server indicator lights (continued)

<table>
<thead>
<tr>
<th>Indicator light</th>
<th>Color</th>
<th>Normal operation</th>
<th>Problem indicator</th>
<th>Possible conditions suggested by the problem indicator^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage server fan fault</td>
<td>Amber</td>
<td>Off</td>
<td>On</td>
<td>• Storage server fan failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Fan and communications module is missing, unplugged, or failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Circuity failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Overtemperature condition</td>
</tr>
<tr>
<td>Controller fault</td>
<td>Amber</td>
<td>Off</td>
<td>On</td>
<td>Controller failed; one or more memory modules failed (SIMMs or DIMMs).</td>
</tr>
<tr>
<td>Fast write cache</td>
<td>Green</td>
<td>Steady or blinking^2</td>
<td>Software dependent^1</td>
<td>Normal operation is off if:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Cache is not enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Battery is not ready</td>
</tr>
</tbody>
</table>

^1 Always use the storage management software to identify the failure.
^2 The fast write cache indicator light is on when there is data in the cache and it blinks during a fast write operation.

RAID controller indicator lights

Each RAID controller has ten indicator lights: one power, one fault, and eight status lights, as shown in Figure 57.

Note: To view the RAID controller indicator lights, remove the DS4400 storage server bezel.

Figure 57. DS4400 storage server RAID controller indicator lights

Table 36 on page 84 describes the RAID controller indicator lights.
Table 36. DS4400 storage server RAID controller indicator lights

<table>
<thead>
<tr>
<th>Indicator light</th>
<th>Color</th>
<th>Normal operation</th>
<th>Problem indicator</th>
<th>Possible conditions suggested by the problem indicator¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Green</td>
<td>On</td>
<td>Off</td>
<td>• No power to storage subsystem</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Cables are loose or the switches are off</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Power supply failed, is missing, or is not fully seated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Overtemperature condition</td>
</tr>
<tr>
<td>Fault3 (seven lights, not including Heartbeat)</td>
<td>Amber</td>
<td>Off</td>
<td>On</td>
<td>Controller failure; controller fault condition</td>
</tr>
<tr>
<td>Heartbeat</td>
<td>Green</td>
<td>Blinking</td>
<td>Not blinking</td>
<td>No controller activity</td>
</tr>
<tr>
<td>Status3 (seven lights, not including Heartbeat)</td>
<td>Green</td>
<td>Various patterns depending on the condition²</td>
<td>Various patterns depending on the condition²</td>
<td>If any status indicator lights are lit and the controller is not offline, there is a memory fault that indicates that the controller CRU failed.</td>
</tr>
</tbody>
</table>

¹ Always use the storage management software to identify the failure.
² There are eight status lights (the Heartbeat and seven others) that glow in various patterns, depending on the controller status.
³ If the controller is offline, all of the indicator lights will be lit. This does not indicate failure.

Battery indicator lights

The battery has four indicator lights as shown in Figure 58.

Note: To view the battery indicator lights, remove the DS4400 storage server bezel.

![Battery Indicator Lights](image)

Figure 58. DS4400 storage server battery indicator lights

Table 37 on page 85 describes the battery indicator lights.
Table 37. DS4400 storage server battery indicator lights

<table>
<thead>
<tr>
<th>Indicator light</th>
<th>Color</th>
<th>Normal operation</th>
<th>Problem indicator</th>
<th>Possible conditions suggested by the problem indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault-A or Fault-B</td>
<td>Amber</td>
<td>Off</td>
<td>On</td>
<td>• Left or right battery bank failed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Battery is either discharged or defective</td>
</tr>
<tr>
<td>Full Charge-A or Full Charge-B</td>
<td>Green</td>
<td>On²</td>
<td>Off</td>
<td>• Left or right battery bank is not fully charged</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Power has been off for an extended period and has drained battery power</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Batteries are weak</td>
</tr>
</tbody>
</table>

1 Always use the storage management software to identify the failure.
2 If either Full Charge-A or Full Charge-B indicator light is blinking, the battery is in the process of charging.

Fan and communications module indicator light

The fan and communications module has one indicator light as shown in Figure 59.

Fault
Amber light indicates a fault in the fan and communications module.
Normal status: Off
Problem status: On

![Figure 59](image)

Figure 59. DS4400 storage server fan and communications module indicator light

Table 38 describes the fan and communications module indicator light.

Table 38. DS4400 storage server fan and communications module indicator light

<table>
<thead>
<tr>
<th>Indicator light</th>
<th>Color</th>
<th>Normal operation</th>
<th>Problem indicator</th>
<th>Possible conditions suggested by the problem indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan and communication fault</td>
<td>Amber</td>
<td>Off</td>
<td>On</td>
<td>• Fan and communications module failed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>or is installed incorrectly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Overtemperature condition</td>
</tr>
</tbody>
</table>

1 Always use the storage management software to identify the failure.

Power supply indicator light

The power supply has one indicator light, as shown in Figure 60 on page 86.
Table 39 describes the power supply indicator light.

Table 39. DS4400 storage server power supply indicator light

<table>
<thead>
<tr>
<th>Indicator light</th>
<th>Color</th>
<th>Normal operation</th>
<th>Problem indicator</th>
<th>Possible conditions suggested by the problem indicator¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>Green</td>
<td>On</td>
<td>Off</td>
<td>• No power to DS4400 storage server</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• No power to storage subsystem</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Power supply failed or is turned off</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Overtemperature condition</td>
</tr>
</tbody>
</table>

¹ Always use the storage management software to identify the failure.

Mini hub indicator lights

There are five host-side mini hub indicator lights and five drive-side mini hub indicator lights. Figure 61 shows the host-side indicator lights. The drive side indicator lights are the same; however, the possible conditions suggested by the problem indicators (described in Table 40 on page 87) might be different.

Table 40 on page 87 describes the indicator light status when there are fibre channel connections between host-side and drive-side mini hubs.
<table>
<thead>
<tr>
<th>Icon</th>
<th>Indicator light</th>
<th>Color</th>
<th>Normal operation</th>
<th>Problem indicator</th>
<th>Possible condition indicated by the problem indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Speed</td>
<td>Green</td>
<td>On for 2 Gb Off for 1 Gb</td>
<td></td>
<td>Light on indicates data transfer rate of 2 Gb per second. Light off indicates data transfer rate of 1 Gb per second.</td>
</tr>
<tr>
<td></td>
<td>Fault</td>
<td>Amber</td>
<td>Off</td>
<td>On</td>
<td>Mini hub or SFP module failed</td>
</tr>
</tbody>
</table>
| ![Bypass](image) | Bypass (upper port) | Amber | Off | On | - Upper mini hub port is bypassed
- Mini hub or SFP module failed, is loose, or is missing
- Fiber-optic cables are damaged |

Note: If a host-side mini hub is not connected to a controller, this fault light is always lit.

Note: When there are two functioning SFP modules installed into the mini hub ports and there are no fibre channel cables connected to them, the bypass indicator is lit.

If there is only one functioning SFP module installed in a host-side mini hub port and there are no fibre channel cables connected to it, the indicator light will not be lit.

However, the drive-side mini hub bypass indicator light will be lit when there is one SFP module installed in the mini hub and the mini hub has no fibre channel connection.
<table>
<thead>
<tr>
<th>Icon</th>
<th>Indicator light</th>
<th>Color</th>
<th>Normal operation</th>
<th>Problem indicator</th>
<th>Possible condition indicated by the problem indicator</th>
</tr>
</thead>
</table>
| ![Loop good icon](image) | Loop good | Green | On | Off | - The loop is not operational, no devices are connected
| | | | | | - Mini hub failed or a faulty device is connected to the mini hub
| | | | | | - If there is no SFP module installed, the indicator will be lit
| | | | | | - If one functioning SFP module is installed in the host-side mini hub port and there is no fibre channel cable connected to it, the loop good indicator light will not be lit.
| | | | | |
| | | | | | If one functioning SFP module is installed in the drive-side mini hub port and there is no fibre channel cable connected to it, the loop good indicator light will be lit.
| | | | | | - Drive enclosure failed (drive-side mini hub only) |
| ![Bypass icon](image) | Bypass (lower port) | Amber | Off | On | - Lower mini hub port is bypassed; there are no devices connected
| | | | | | - Mini hub or SFP module failed or is loose
| | | | | | - Fiber-optic cables are damaged
| | | | | | **Note:** When there are two functioning SFP modules installed into the mini hub port and there are no fibre channel cables connected to them, the bypass indicator light is lit.
| | | | | |
| | | | | | If there is only one functioning SFP module installed in a host-side mini hub and there are no fibre channel cables connected to it, the indicator light is not lit.
| | | | | |
| | | | | | However, the drive-side mini hub bypass indicator light will be lit when there is one functioning SFP module installed in the mini hub port and the mini hub has no fibre channel cables connected to it.

Table 40. DS4400 storage server host-side and drive-side mini hub indicator lights (continued)
Using the diagnostic hardware

The DS4400 storage server comes with a wrap-plug adapter and LC coupler. The wrap-plug adapter and LC coupler are used to identify Fibre channel path problems. The loopback and sendEcho tests are described in the *IBM TotalStorage DS4000 Problem Determination Guide*.

Symptom-to-FRU index

The Symptom-to-FRU index (Table 41) lists symptoms and the possible causes. The most likely cause is listed first.

The problem determination (PD) maps found in the *IBM TotalStorage DS4000 Problem Determination Guide* provide you with additional diagnostic aids.

Table 41. Symptom-to-FRU index for DS4400 storage server

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action/FRU</th>
</tr>
</thead>
</table>
| **Controller LED (front cover) is on.** | 1. Reseat Controller CRU.
2. Place Controller online using DS4000 Storage Manager GUI.
3. If in passive mode, check Fibre path/GBIC.
4. Controller CRU |
| **Software issued a controller error message.** | 1. Check Controller Fan
2. Controller CRU |
| **Software errors occur when attempting to access controllers or drives.** | 1. Check appropriate software and documentation to make sure the system is set up correctly and the proper command was run.
2. Power to the Controller
3. Interface cables
4. ID settings
5. Controller
6. Drive
7. Controller backpanel |
| **Fan LED (front cover) is on.** | 1. Power supply fan CRU
2. Controller fan CRU |
| **Controller and Fan fault LEDs (front cover) are on.** | 1. Check both Fan and Controller CRUs for fault LED and replace faulty CRU. |
| **Fault-A or Fault-B LED (battery CRU) is on.** | 1. Battery CRU |
| **Full Charge-A or Full Charge-B LED (battery CRU) is off.** | 1. Power-on Controller and allow batteries to charge for 24 hours until the Full Charge LEDs are on.
2. Battery CRU
3. Both power supplies |
| **No power to controller (all power LEDs off).** | 1. Check power switches and power cords.
2. Power supplies |
| **Power Supply LED is off.** | 1. Check and reseat power supply.
2. Check for overheating. Wait ten minutes for the power supply CRU to cool down.
3. Power supply CRU |
Table 41. Symptom-to-FRU index for DS4400 storage server (continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action/FRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply CRUs LED are on, but all other CRU LEDs are off.</td>
<td>1. DC power harness</td>
</tr>
<tr>
<td>The Storage Manager client Enterprise Management window sees each storage server controller as an independent storage subsystem.</td>
<td>No drives are present in the storage server. Ensure that at least one drive is present in the storage server so that it can be configured properly.</td>
</tr>
<tr>
<td></td>
<td>One controller was replaced incorrectly. The controller firmware versions probably failed to synchronize correctly.</td>
</tr>
<tr>
<td></td>
<td>To recover, perform the following steps:</td>
</tr>
<tr>
<td></td>
<td>1. Remove and reinsert the controller blade.</td>
</tr>
<tr>
<td></td>
<td>2. Wait 5 minutes.</td>
</tr>
<tr>
<td></td>
<td>3. Delete the controller entry with the incorrect firmware version from the DS4000 Storage Manager Enterprise Management window.</td>
</tr>
<tr>
<td></td>
<td>4. Add the controller back to the DS4000 Storage Manager Enterprise Management window using the Add Device menu option in the Enterprise Management window.</td>
</tr>
<tr>
<td></td>
<td>5. If the Storage Manager client Enterprise Management window still shows each storage server controller as an independent storage subsystem or a partially managed device, repeat this procedure. If the problem still persists, contact IBM support.</td>
</tr>
</tbody>
</table>

Parts listing

Figure 62 and the following table provide a parts listing for the type 1742 DS4400 storage server.
<table>
<thead>
<tr>
<th>Index</th>
<th>DS4400 storage server (Type 1742)</th>
<th>FRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>175-Watt Power Supply</td>
<td>01K6743</td>
</tr>
<tr>
<td>2</td>
<td>Mini hub Card Assembly</td>
<td>19K1270</td>
</tr>
<tr>
<td>3</td>
<td>Optical Cable - 1 Meter</td>
<td>19K1265</td>
</tr>
<tr>
<td>3</td>
<td>Optical Cable - 5 Meters</td>
<td>19K1266</td>
</tr>
<tr>
<td>3</td>
<td>Optical Cable - 25 Meters</td>
<td>19K1267</td>
</tr>
<tr>
<td></td>
<td>LC-SC Adapter Cable</td>
<td>19K1268</td>
</tr>
<tr>
<td>4</td>
<td>Short Wave SFP Module</td>
<td>19K1280</td>
</tr>
<tr>
<td>4</td>
<td>Long Wave SFP Module</td>
<td>19K1281</td>
</tr>
<tr>
<td>5</td>
<td>Frame Assembly with Midplane</td>
<td>19K1277</td>
</tr>
<tr>
<td>6</td>
<td>RAID Card</td>
<td>19K1284</td>
</tr>
<tr>
<td>7</td>
<td>Battery Backup Assembly</td>
<td>24P0953</td>
</tr>
<tr>
<td>8</td>
<td>Bezel Assembly</td>
<td>19K1279</td>
</tr>
<tr>
<td>9</td>
<td>Front Fan Assembly (Controller CRU Fan)</td>
<td>37L0094</td>
</tr>
<tr>
<td>10</td>
<td>Rear Fan Assembly</td>
<td>37L0102</td>
</tr>
<tr>
<td></td>
<td>Battery Cable</td>
<td>03K9285</td>
</tr>
<tr>
<td></td>
<td>Blank Canister</td>
<td>37L0100</td>
</tr>
<tr>
<td></td>
<td>Line Cord Jumper, High Voltage</td>
<td>36L8886</td>
</tr>
<tr>
<td></td>
<td>Power Cable</td>
<td>37L0101</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous Hardware Kit</td>
<td>24P0954</td>
</tr>
<tr>
<td></td>
<td>Rail Kit</td>
<td>37L0085</td>
</tr>
<tr>
<td></td>
<td>Line Cord, US</td>
<td>6952300</td>
</tr>
<tr>
<td></td>
<td>LC Wrap Plug ASM</td>
<td>24P0950</td>
</tr>
</tbody>
</table>

“Power cords,” on page 135 lists required power cords for the DS4000 storage components discussed in this document by country and region.
Chapter 11. Type 1742 DS4500 Storage Server

The IBM DS4500 storage server provides dual, redundant controllers with fibre channel interfaces to both the host and drive loops. The DS4500 storage server has redundant cooling, redundant power, and battery backup of the controller cache.

Designed to provide maximum host and drive-side redundancy, the DS4500 storage server supports direct attachment of up to four hosts that contain two host adapters each. By using external fibre channel managed hubs and switches in conjunction with the DS4500 storage server, you can attach up to 64 hosts with two adapters each to a DS4500 storage server.

The DS4500 storage server is compatible with the following IBM products:

- IBM FASTT EXP500 (see Chapter 13 on page 111)
- IBM DS4000 EXP700 and DS4000 EXP710
 The DS4000 controller firmware must be upgraded to version 05.21.xx.xx or later to enable DS4500 storage server support for the DS4000 EXP700.
 The DS4000 controller firmware must be upgraded to version 06.11.xx.xx or later to enable DS4500 storage server support for the DS4000 EXP710.
- IBM DS4000 EXP100
 The DS4000 controller firmware version 05.41.xx.xx enables the DS4500 storage server to support the DS4000 EXP100. However, it is recommended that you upgrade the DS4000 controller firmware to the latest version available (06.11.xx.xx or higher).
 Important: The DS4500 storage server currently supports the concurrent attachment, or intermixing, of fibre channel and Serial ATA storage expansion units in a single DS4500 storage server configuration. To enable FC/SATA intermixing with the DS4500 storage server, you must purchase the FC/SATA Intermix premium feature and perform the required DS4000 Storage Manager and firmware upgrades to support FC/SATA intermixing.
 - DS4000 FC2-66 host bus adapter (FRU 19K1247)
 - DS4000 FC2-133 host bus adapter (FRU 24P0962) (see Chapter 5 on page 17)
 - Type 3534-F08 fibre channel switch
 - Type 2109 Series fibre channel switches
 - Type 2005 Series fibre channel switches

For the latest list of compatible devices, see the ServerProven Web site at: www.pc.ibm.com/us/compat/nos/cert.shtml

General checkout

Use the indicator lights and the Symptom-to-FRU index to diagnose problems.

The PD maps found in the IBM TotalStorage DS4000 Problem Determination Guide provide you with additional diagnostic aids.
Important:
To ensure proper operation when you connect a DS4000 EXP100 expansion unit to a DS4500 storage server, you must perform the required software and firmware support code upgrades to enable DS4500 support for the EXP100.

- Upgrade the DS4000 Storage Manager host software in the host servers and the management station to version 8.41 or later. (It is recommended that you update DS4000 Storage Manager to version 9.1.) See the IBM TotalStorage DS4000 Storage Manager Installation and Support Guide for your operating system.

- Upgrade the controller firmware and NVSRAM and the ESM firmware to the required levels. See the IBM TotalStorage DS4000 EXP100 Storage Expansion Unit Installation, User’s, and Maintenance Guide for firmware requirements and instructions on how to perform these upgrades.

Attention: Do not upgrade your controller firmware to version 5.41.5x.xx (or to version 6.11.xx.xx or higher) if your storage server is connected to an EXP100 with ESM firmware version 953x or earlier.

When the DS4500 storage server is connected to a DS4000 EXP100, the DS4500 must not have fibre channel drives inserted in its slots. When connected to a DS4000 EXP100, all the slots in the DS4500 storage server must have blank drive trays to ensure proper cooling.

Important: The DS4500 storage server currently supports the concurrent attachment, or intermixing, of fibre channel and Serial ATA storage expansion units in a single DS4500 storage server configuration. To enable FC/SATA intermixing with the DS4500 storage server, you must purchase the FC/SATA Intermix premium feature and perform the required DS4500 Storage Manager and firmware upgrades to support FC/SATA intermixing.

Checking the indicator lights
The DS4500 storage server indicator lights display the status of the DS4500 storage server and its components. Green indicator lights mean normal operating status; amber indicator lights mean a possible failure.

It is important that you check all the indicator lights on the front and back of the controller unit after you turn on the power. After you turn on the power, the indicator lights might blink intermittently. Wait until the DS4500 storage server completes its power up before checking for faults. It can take up to 15 minutes for the battery to complete its self-test and up to 24 hours to fully charge, particularly after an unexpected power loss of more than a few minutes.

The indicator lights for the components of the DS4500 storage server are described in the following sections.

Storage server indicator lights
The storage server has five indicator lights, as shown in Figure 63 on page 95. To view the storage server indicator lights, you do not have to remove the DS4500 storage server bezel.
Table 42 describes the storage server indicator lights.

Table 42. DS4500 storage server indicator lights

<table>
<thead>
<tr>
<th>Indicator light</th>
<th>Color</th>
<th>Normal operation</th>
<th>Problem indicator</th>
<th>Possible conditions suggested by the problem indicator¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Green</td>
<td>On</td>
<td>Off</td>
<td>• No power to DS4500 storage server</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• No power to storage subsystem</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Cables are loose or the switches are off</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Power supply failed, is missing, or is not fully seated in DS4500 storage server</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Overtemperature condition</td>
</tr>
<tr>
<td>Power supply fault</td>
<td>Amber</td>
<td>Off</td>
<td>On</td>
<td>• Power supply failed or if the Power supply is turned off, disconnected, or not fully seated in DS4500 storage server</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Overtemperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• No power to DS4500 storage server or storage subsystem (all indicator lights are off)</td>
</tr>
<tr>
<td>Storage server fan fault</td>
<td>Amber</td>
<td>Off</td>
<td>On</td>
<td>• Storage server fan failed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Fan and communications module is missing, unplugged, or failed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Circuitry failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Overtemperature condition</td>
</tr>
<tr>
<td>Controller fault</td>
<td>Amber</td>
<td>Off</td>
<td>On</td>
<td>Controller failed; one or more memory modules failed (SIMMs or DIMMs)</td>
</tr>
<tr>
<td>Fast write cache</td>
<td>Green</td>
<td>Steady or blinking²</td>
<td>Software dependent¹</td>
<td>Normal operation is off if:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Cache is not enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Battery is not ready</td>
</tr>
</tbody>
</table>

¹ Always use the storage management software to identify the failure.
² The fast write cache indicator light is on when there is data in the cache and it blinks during a fast write operation.
RAID controller indicator lights

Each RAID controller has ten indicator lights: one power, one fault, and eight status lights, as shown in Figure 64.

Note: To view the RAID controller indicator lights, remove the DS4500 storage server bezel.

Table 43 describes the RAID controller indicator lights.

Table 43. DS4500 RAID controller indicator lights

<table>
<thead>
<tr>
<th>Indicator light</th>
<th>Color</th>
<th>Normal operation</th>
<th>Problem indicator</th>
<th>Possible conditions suggested by the problem indicator¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Green</td>
<td>On</td>
<td>Off</td>
<td>• No power to storage subsystem
• Cables are loose or the switches are off
• Power supply failed, is missing, or is not fully seated
• Overtemperature condition</td>
</tr>
<tr>
<td>Fault²</td>
<td>Amber</td>
<td>Off</td>
<td>On</td>
<td>Controller failure; controller fault condition</td>
</tr>
<tr>
<td>Heartbeat</td>
<td>Green</td>
<td>Blinking</td>
<td>Not blinking</td>
<td>No controller activity</td>
</tr>
<tr>
<td>Status (seven lights, not including Heartbeat)</td>
<td>Green</td>
<td>Various patterns depending on the condition²</td>
<td>Various patterns depending on the condition²</td>
<td>If any status indicator lights are lit and the controller is not offline, a memory fault indicates that the controller FRU failed.</td>
</tr>
</tbody>
</table>
Table 43. DS4500 RAID controller indicator lights (continued)

<table>
<thead>
<tr>
<th>Indicator light</th>
<th>Color</th>
<th>Normal operation</th>
<th>Problem indicator</th>
<th>Possible conditions suggested by the problem indicator¹</th>
</tr>
</thead>
</table>
| Fault-A or Fault-B | Amber | Off | On | • Left or right battery bank failed.
• Battery is either discharged or defective. |
| Full Charge-A or Full Charge-B | Green | On² | Off | • Left or right battery bank is not fully charged.
• Power has been off for an extended period and has drained battery power.
• Batteries are weak. |

¹ Always use the storage management software to identify the failure.
² If either the Full Charge-A or the Full Charge-B indicator light is blinking, the battery is in the process of charging.

Battery indicator lights

The battery has four indicator lights as shown in [Figure 66 on page 98](#).

Note: To view the battery indicator lights, remove the DS4500 storage server bezel.

![Battery Indicator Lights Diagram](diagram)

Fault-B
Amber light indicates a fault in the left battery bank.
Normal status: Off
Problem status: On

Full Charge-B
Green light indicates the left battery bank is fully charged.
Normal status: On
Problem status: Off
Changing status: Blinking

Full Charge-A
Green light indicates the right battery bank is fully charged.
Normal status: On
Problem status: Off
Changing status: Blinking

Fault-A
Amber light indicates a fault in the left battery bank.
Normal status: Off
Problem status: On

Figure 65. DS4500 storage server battery indicator lights

Table 44. DS4500 storage server battery indicator lights

<table>
<thead>
<tr>
<th>Indicator light</th>
<th>Color</th>
<th>Normal operation</th>
<th>Problem indicator</th>
<th>Possible conditions suggested by the problem indicator²</th>
</tr>
</thead>
</table>
| Fault-A or Fault-B | Amber | Off | On | • Left or right battery bank failed.
• Battery is either discharged or defective. |
| Full Charge-A or Full Charge-B | Green | On² | Off | • Left or right battery bank is not fully charged.
• Power has been off for an extended period and has drained battery power.
• Batteries are weak. |

¹ Always use the storage management software to identify the failure.
² If either the Full Charge-A or the Full Charge-B indicator light is blinking, the battery is in the process of charging.
Fan and communications module indicator light
The fan and communications module has one indicator light as shown in Figure 66.

![Figure 66. DS4500 storage server fan and communications module indicator light](image)

Table 45 describes the fan and communications module indicator light.

<table>
<thead>
<tr>
<th>Indicator light</th>
<th>Color</th>
<th>Normal operation</th>
<th>Problem indicator</th>
<th>Possible conditions suggested by the problem indicator¹</th>
</tr>
</thead>
</table>
| Fan and communication fault | Amber | Off | On | • Fan and communications module failed or is installed incorrectly
| | | | | • Overtemperature condition |

¹ Always use the storage management software to identify the failure.

Power supply indicator light
The power supply has one indicator light, as shown in Figure 67.

![Figure 67. DS4500 storage server power supply indicator light](image)

Table 46 on page 99 describes the power supply indicator light.
Table 46. DS4500 storage server power supply indicator light

<table>
<thead>
<tr>
<th>Indicator light</th>
<th>Color</th>
<th>Normal operation</th>
<th>Problem indicator</th>
<th>Possible conditions suggested by the problem indicator</th>
</tr>
</thead>
</table>
| Power supply | Green | On | Off | • No power to DS4500 storage server
 | | | | • No power to storage subsystem
 | | | | • Power supply failed or is turned off
 | | | | • Overtemperature condition |

1 Always use the storage management software to identify the failure.

Mini hub indicator lights

There are five host-side mini hub indicator lights and five drive-side mini hub indicator lights. [Figure 68](#) shows the host-side indicator lights. The drive side indicator lights are the same; however, the possible conditions suggested by the problem indicators (described in Table 40 on page 87) might be different.

![Figure 68. DS4500 storage server mini hub indicator lights](#)

Table 47. DS4500 storage server host-side and drive-side mini hub indicator lights

<table>
<thead>
<tr>
<th>Icon</th>
<th>Indicator light</th>
<th>Color</th>
<th>Normal operation</th>
<th>Problem indicator</th>
<th>Possible condition indicated by the problem indicator</th>
</tr>
</thead>
</table>
| ![Speed](#) | Speed | Green | On for 2 Gb
Off for 1 Gb | Light on indicates data transfer rate of 2 Gb per second.
Light off indicates data transfer rate of 1 Gb per second. |
| ![Fault](#) | Fault | Amber | Off | On | Mini hub or SFP module failed.
Note: If a host-side mini hub is not connected to a controller, this fault light is always lit. |
Table 47. DS4500 storage server host-side and drive-side mini hub indicator lights (continued)

<table>
<thead>
<tr>
<th>Icon</th>
<th>Indicator light</th>
<th>Color</th>
<th>Normal operation</th>
<th>Problem indicator</th>
<th>Possible condition indicated by the problem indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Icon]</td>
<td>Bypass (upper port)</td>
<td>Amber</td>
<td>Off</td>
<td>On</td>
<td>• Upper mini hub port is bypassed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Mini hub or SFP module failed, is loose, or is missing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Fiber-optic cables are damaged.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note: When two functioning SFP modules are installed into the mini hub ports and no fibre channel are cables connected to them, the bypass indicator is lit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>If there is only one functioning SFP module installed in a host-side mini hub port and there are no fibre channel cables connected to it, the indicator light will not be lit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>However, the drive-side mini hub bypass indicator light will be lit when one SFP module is installed in the mini hub and the mini hub has no fibre channel connection.</td>
</tr>
<tr>
<td>![Icon]</td>
<td>Loop good</td>
<td>Green</td>
<td>On</td>
<td>Off</td>
<td>• The loop is not operational, no devices are connected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Mini hub failed or a faulty device is connected to the mini hub.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• If there is no SFP module installed, the indicator will be lit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• If one functioning SFP module is installed in the host-side mini hub port and no fibre channel cable is connected to it, the loop good indicator light will not be lit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>If one functioning SFP module is installed in the drive-side mini hub port and no fibre channel cable is connected to it, the loop good indicator light will be lit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Drive enclosure failed (drive-side mini hub only).</td>
</tr>
</tbody>
</table>
Table 47. DS4500 storage server host-side and drive-side mini hub indicator lights (continued)

<table>
<thead>
<tr>
<th>Icon</th>
<th>Indicator light</th>
<th>Color</th>
<th>Normal operation</th>
<th>Problem indicator</th>
<th>Possible condition indicated by the problem indicator</th>
</tr>
</thead>
</table>
| ![Icon](image) | Bypass (lower port) | Amber | Off | On | - Lower mini hub port is bypassed; there are no devices connected.
- Mini hub or SFP module failed or is loose.
- Fiber-optic cables are damaged.

Note: When two functioning SFP modules are installed into the mini hub port and no fibre channel cables are connected to them, the bypass indicator light is lit.
If only one functioning SFP module is installed in a host-side mini hub and no fibre channel cables are connected to it, the indicator light is not lit.
However, the drive-side mini hub bypass indicator light will be lit when one functioning SFP module is installed in the mini hub port and the mini hub has no fibre channel cables connected to it. |

Using the diagnostic hardware

The DS4500 storage server comes with a wrap-plug adapter and LC coupler. The wrap-plug adapter and LC coupler are used to identify fibre path problems. The loopback and sendEcho tests are described in the *IBM TotalStorage DS4000 Problem Determination Guide*.

Symptom-to-FRU index

The Symptom-to-FRU index (Table 48) lists symptoms and the possible causes. The most likely cause is listed first.

The problem determination (PD) maps found in the *IBM TotalStorage DS4000 Problem Determination Guide* provide you with additional diagnostic aids.

Table 48. Symptom-to-FRU index for DS4500 RAID controller

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action/FRU</th>
</tr>
</thead>
</table>
| Controller LED (front cover) is on. | 1. Reseat Controller CRU.
2. Place Controller online using DS4000 Storage Manager GUI.
3. If in passive mode, check Fibre path/SFP.
4. Controller CRU |
Table 48. Symptom-to-FRU index for DS4500 RAID controller (continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action/FRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software issued a controller error message.</td>
<td>1. Check Controller Fan</td>
</tr>
<tr>
<td></td>
<td>2. Controller CRU</td>
</tr>
<tr>
<td>Software errors occur when attempting to access controllers or drives.</td>
<td>1. Check appropriate software and documentation to make sure the system is set up correctly and the proper command was run.</td>
</tr>
<tr>
<td></td>
<td>2. Power to the Controller</td>
</tr>
<tr>
<td></td>
<td>3. Interface cables</td>
</tr>
<tr>
<td></td>
<td>4. ID settings</td>
</tr>
<tr>
<td></td>
<td>5. Controller</td>
</tr>
<tr>
<td></td>
<td>6. Drive</td>
</tr>
<tr>
<td></td>
<td>7. Controller backpanel</td>
</tr>
<tr>
<td>Fan LED (front cover) is on.</td>
<td>1. Power supply fan CRU</td>
</tr>
<tr>
<td></td>
<td>2. Controller fan CRU</td>
</tr>
<tr>
<td>Controller and Fan fault LEDs (front cover) are on.</td>
<td>1. Check both Fan and Controller CRUs for fault LED and replace faulty CRU.</td>
</tr>
<tr>
<td>Fault-A or Fault-B LED (battery CRU) is on.</td>
<td>1. Battery CRU</td>
</tr>
<tr>
<td>Full Charge-A or Full Charge-B LED (battery CRU) is off.</td>
<td>1. Power-on Controller and allow batteries to charge for 24 hours until the Full Charge LEDs are on.</td>
</tr>
<tr>
<td></td>
<td>2. Battery CRU</td>
</tr>
<tr>
<td></td>
<td>3. Both power supplies</td>
</tr>
<tr>
<td>No power to controller (all power LEDs off).</td>
<td>1. Check power switches and power cords.</td>
</tr>
<tr>
<td></td>
<td>2. Power supplies</td>
</tr>
<tr>
<td>Power Supply LED is off.</td>
<td>1. Check and reseat power supply.</td>
</tr>
<tr>
<td></td>
<td>2. Check for overheating. Wait ten minutes for the power supply CRU to cool down.</td>
</tr>
<tr>
<td></td>
<td>3. Power supply CRU</td>
</tr>
<tr>
<td>Power Supply CRUs LED are on, but all other CRU LEDs are off.</td>
<td>1. DC power harness</td>
</tr>
</tbody>
</table>
Table 48. Symptom-to-FRU index for DS4500 RAID controller (continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action/FRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Storage Manager client Enterprise Management window sees each storage server controller as an independent storage subsystem.</td>
<td>No drives are present in the storage server. Ensure that at least one drive is present in the storage server so that it can be configured properly.</td>
</tr>
<tr>
<td>One controller was replaced incorrectly. The controller firmware versions probably failed to synchronize correctly.</td>
<td>To recover, perform the following steps:</td>
</tr>
<tr>
<td></td>
<td>1. Remove and reinsert the controller blade.</td>
</tr>
<tr>
<td></td>
<td>2. Wait 5 minutes.</td>
</tr>
<tr>
<td></td>
<td>3. Delete the controller entry with the incorrect firmware version from the DS4000 Storage Manager Enterprise Management window.</td>
</tr>
<tr>
<td></td>
<td>4. Add the controller back to the DS4000 Storage Manager Enterprise Management window using the Add Device menu option in the Enterprise Management window.</td>
</tr>
<tr>
<td></td>
<td>5. If the Storage Manager client Enterprise Management window still shows each storage server controller as an independent storage subsystem or a partially managed device, repeat this procedure. If the problem still persists, contact IBM support.</td>
</tr>
</tbody>
</table>

Parts listing

Figure 69 and the following table provide a parts listing for the DS4500 storage server.

<table>
<thead>
<tr>
<th>Index</th>
<th>DS4500 storage server</th>
<th>FRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>175-Watt Power Supply</td>
<td>01K6743</td>
</tr>
<tr>
<td>2</td>
<td>Mini hub Card Assembly</td>
<td>19K1270</td>
</tr>
<tr>
<td>3</td>
<td>Optical Cable - 1 Meter</td>
<td>19K1265</td>
</tr>
<tr>
<td>Index</td>
<td>DS4500 storage server</td>
<td>FRU</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>3</td>
<td>Optical Cable - 5 Meters</td>
<td>19K1266</td>
</tr>
<tr>
<td>3</td>
<td>Optical Cable - 25 Meters</td>
<td>19K1267</td>
</tr>
<tr>
<td></td>
<td>LC-SC Adapter Cable</td>
<td>19K1268</td>
</tr>
<tr>
<td>4</td>
<td>Short Wave SFP Module</td>
<td>19K1280</td>
</tr>
<tr>
<td>4</td>
<td>Long Wave SFP Module</td>
<td>19K1281</td>
</tr>
<tr>
<td>5</td>
<td>Frame Assembly with Midplane</td>
<td>71P8142</td>
</tr>
<tr>
<td>6</td>
<td>RAID Card</td>
<td>71P8144</td>
</tr>
<tr>
<td>7</td>
<td>Battery Backup Assembly</td>
<td>24P0953</td>
</tr>
<tr>
<td>8</td>
<td>Bezel Assembly</td>
<td>71P8141</td>
</tr>
<tr>
<td>9</td>
<td>Front Fan Assembly (Controller CRU Fan)</td>
<td>37L0094</td>
</tr>
<tr>
<td>10</td>
<td>Rear Fan Assembly</td>
<td>37L0102</td>
</tr>
<tr>
<td></td>
<td>Battery Cable</td>
<td>03K9285</td>
</tr>
<tr>
<td></td>
<td>Blank Mini Hub Canister</td>
<td>37L0100</td>
</tr>
<tr>
<td></td>
<td>Line Cord Jumper, High Voltage</td>
<td>36L8886</td>
</tr>
<tr>
<td></td>
<td>Power Cable</td>
<td>37L0101</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous Hardware Kit</td>
<td>24P0954</td>
</tr>
<tr>
<td></td>
<td>Rail Kit</td>
<td>37L0085</td>
</tr>
<tr>
<td></td>
<td>Line Cord, US</td>
<td>6952300</td>
</tr>
<tr>
<td></td>
<td>LC Wrap Plug ASM</td>
<td>24P0950</td>
</tr>
</tbody>
</table>

"Power cords," on page 135 lists required power cords for the DS4000 storage components discussed in this document by country and region.
Chapter 12. IBM TotalStorage FASrT EXP15 and EXP200 Storage Expansion Units

Note: The PD maps found in the IBM TotalStorage DS4000 Problem Determination Guide provide you with additional diagnostic aids.

The IBM TotalStorage FASrT EXP15 and EXP200 storage expansion units are compatible with the Type 3526 fibre channel RAID controller (see Chapter 6 on page 21).

This chapter contains the information for the FASrT EXP15 and EXP200 storage expansion units. Information that is common to both enclosures is given first. Information that is specific to each enclosure is given second.

Diagnostics and test information

Important
The service procedures are designed to help you isolate problems. They are written with the assumption that you have model-specific training on all computers, or that you are familiar with the computers, functions, terminology, and service-related information provided in this manual and the appropriate IBM PC/Netfinity Server Hardware Maintenance Manual.

You can use the following is a list of problems and references to diagnose the IBM FASrT EXP15 Type 3520 and FASrT IBM EXP200 Type 3530 storage expansion units.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Disk Drive Numbering</td>
<td>See the IBM Product Installation Guide.</td>
</tr>
<tr>
<td>Error Codes/Error Messages</td>
<td>See the Symptom-to-FRU Index for the server that the storage expansion unit you are servicing is connected to.</td>
</tr>
<tr>
<td>Expansion Unit Options Switches</td>
<td>See the IBM Product Installation Guide.</td>
</tr>
<tr>
<td>Fan Controls and Indications</td>
<td>See the IBM Product Installation Guide.</td>
</tr>
<tr>
<td>Performing a Shutdown</td>
<td>See “Performing a shutdown” on page 106.</td>
</tr>
<tr>
<td>Power Supply Controls and Indicators</td>
<td>See the IBM Product Installation Guide.</td>
</tr>
<tr>
<td>Rear Controls and Indications</td>
<td>See the IBM Product Installation Guide.</td>
</tr>
<tr>
<td>Turning the Power On</td>
<td>See “Turning the power on” on page 106.</td>
</tr>
</tbody>
</table>

Additional service information

This section provides service information that is common to both the FASrT EXP15 and FASrT EXP200 storage expansion units:

- “Performing a shutdown” on page 106
- “Turning the power on” on page 106
- “Specifications” on page 106
Performing a shutdown

Note: If the expansion unit loses power unexpectedly, it might be due to a hardware failure in the power system or midplane (see “Symptom-to-FRU index” on page 108).

Perform the following steps to shut down your expansion unit:
1. Make sure that all I/O activity has stopped. If applicable, logically disconnect from the host controller.
2. Make sure that all amber Fault LEDs are off. If any Fault LEDs are lit (drives, power supplies, or fans), correct the problem before you turn off the power.
3. Turn off both power supply switches on the back of the expansion unit.

Turning the power on

Perform the following steps to power on the FASTT EXP15 and FASTT EXP200.

• Initial start-up:
 1. Verify that all communication and power cables are plugged into the back of the expansion unit.
 a. All hard disk drives are locked securely in place.
 b. For FASTT EXP15: The option ID switch on the expansion unit is set correctly.
 For FASTT EXP200: Option switches 1 through 5 and the tray number switch on the expansion unit are set correctly.
 c. The host controller and other SCSI bus devices are ready for the initial power-up.
 d. Power on the expansion unit before you power on the server.
 2. Turn on the power to each device, based on this power up sequence.
 3. Turn on both power supply switches on the back of the expansion unit.
 4. Only the green LEDs on the front and back should be on. If one or more of the amber Fault LEDs are on, see “Symptom-to-FRU index” on page 108.

• Re-starting:
 If you are re-starting after a normal shutdown, wait at least ten seconds before you attempt to turn on either power supply switch.

Specifications

Table 49. Specifications for FASTT EXP15 and FASTT EXP200

<table>
<thead>
<tr>
<th>Specification</th>
<th>FASTT EXP15 Type 3520</th>
<th>FASTT EXP200 Type 3530</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (with front panel)</td>
<td>Depth: 57.9 cm (22.8 in.)</td>
<td>Depth: 56.3 cm (22.2 in.)</td>
</tr>
<tr>
<td></td>
<td>Height: 13.2 cm (5.2 in.)</td>
<td>Height: 12.8 cm (5 in.)</td>
</tr>
<tr>
<td></td>
<td>Width: 48.2 mm (18.97 in.)</td>
<td>Width: 44.7 mm (17.6 in.)</td>
</tr>
<tr>
<td>Weight</td>
<td>Typical expansion unit as shipped: 39 kg (86 lb)</td>
<td>Typical expansion unit as shipped: 22.5 kg (49.5 lb)</td>
</tr>
</tbody>
</table>
Table 49. Specifications for FASTT EXP15 and FASTT EXP200 (continued)

<table>
<thead>
<tr>
<th>Specification</th>
<th>FASTT EXP15 Type 3520</th>
<th>FASTT EXP200 Type 3530</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Input:</td>
<td>Sign-wave input (50 to 60 Hz)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Low range: Minimum: 90 V ac / Maximum: 127 V ac</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• High range: Minimum: 198 V ac / Maximum: 257 V ac</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input Kilovolt-amperes (kVA) approximately</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Minimum configuration: 0.06 kVA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Maximum configuration: 0.39 kVA</td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td>Air Flow: Air flow is from front to back</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air temperature:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Expansion unit on:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10° to 35°C (50° to 95°F)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altitude: 0 to 914 m (3000 ft.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Expansion unit on:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10° to 32°C (50° to 90°F)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altitude: 914 m (3000 ft.) to 2133 m (7000 ft.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Humidity: 10% to 80%</td>
<td></td>
</tr>
<tr>
<td>Heat Output</td>
<td>Approximate heat output in British Thermal Units (BTU) per hour:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Minimum configuration: 205.2 BTU (60 watts)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Maximum configuration: 1333.8 BTU (390 watts)</td>
<td></td>
</tr>
<tr>
<td>Acoustical Noise Emissions Values</td>
<td>For open bay (0 hard disk drives installed) and typical system configurations (8 hard disk drives installed).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sound Power (idling):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– 6.2 bels (open bay)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– 6.4 bels (typical)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sound Power (operating):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– 6.2 bels (open bay)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– 6.5 bels (typical)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sound Pressure (idling):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– 47 dBA (open bay)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– 49 dBA (typical)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sound Pressure (operating):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– 47 dBA (open bay)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– 50 dBA (typical)</td>
<td></td>
</tr>
</tbody>
</table>

These levels are measured in controlled acoustical environments according to ISO 7779 and are reported in accordance with ISO 9296. The declared sound power levels indicate an upper limit, below which a large portion of machines operate. Sound pressure levels in your location might exceed the average 1-meter values stated because of room reflections and other nearby noise.
Symptom-to-FRU index

Note: The PD maps found in the *IBM TotalStorage DS4000 Problem Determination Guide* provide you with additional diagnostic aids.

Use [Table 50](#) to find solutions to problems that have definite symptoms.

Table 50. Symptom-to-FRU index for FASiT EXP15 and FASiT EXP200 storage expansion units

<table>
<thead>
<tr>
<th>Problem Indicator</th>
<th>Action/FRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>FASiT EXP200 only: Amber LED On (Front Panel)</td>
<td>1. General Machine Fault
Check for amber LED on expansion unit</td>
</tr>
<tr>
<td>FASiT EXP15 only: Amber and Green LEDs flashing (Drive)</td>
<td>1. Host issued a drive rebuild command</td>
</tr>
<tr>
<td>FASiT EXP15 only: Amber and Green LEDs Off (Power supply)</td>
<td>1. Reseat hard disk drive
2. Hard disk drive</td>
</tr>
<tr>
<td>Amber LED On (Drive)</td>
<td>1. Hard Disk Drive</td>
</tr>
<tr>
<td>Amber LED On (Fan)</td>
<td>1. Fan</td>
</tr>
<tr>
<td>Amber LED On (ESM board)</td>
<td>1. ESM board
2. Check for fan fault LED
3. Unit is overheating. Check temperature.</td>
</tr>
<tr>
<td>Amber and Green LEDs On (Power supply)</td>
<td>1. Power Supply</td>
</tr>
<tr>
<td>All Green LEDs Off (Power supply)</td>
<td>1. Check AC voltage cabinet AC voltage line inputs
2. Power Supplies
3. Midplane board</td>
</tr>
<tr>
<td>Intermittent power loss to expansion unit</td>
<td>1. Check AC voltage line inputs and cabinet power components
2. Power Supplies
3. Midplane board</td>
</tr>
<tr>
<td>One or more Green LEDs Off (All)</td>
<td>1. Turn Power Switch On
2. Power cord
3. Reseat Power Supply
4. Power Supply</td>
</tr>
<tr>
<td>One or more Green LEDs Off (Drive)</td>
<td>1. No activity to the drive
2. This can be normal activity</td>
</tr>
<tr>
<td>One or more Green LEDs Off (All Hard Disk Drives or those on one Bus)</td>
<td>1. Use SCSI RAID Manager to check drive status
2. SCSI Cables
3. ESM Board
4. Midplane board</td>
</tr>
</tbody>
</table>

108 IBM TotalStorage DS4000: Hardware Maintenance Manual
<table>
<thead>
<tr>
<th>Problem Indicator</th>
<th>Action/FRU</th>
</tr>
</thead>
</table>
| **FASiT EXP15:** Unable to access drives on one or both SCSI buses | 1. Check SCSI cables and connections
2. Option switch 2 must be set to off
3. ESM board |
| **FASiT EXP200:** Unable to access drives on one or both SCSI buses | 1. Check SCSI cables and connections
2. Check the drive SCSI ID setting
3. ESM board
4. Ensure that option switches 1 and 5 are set to the appropriate position (change the switch position only when the expansion unit is powered off). |
| Intermittent Power Loss | 1. AC power or plug
2. Power supply
3. Midplane |
| Random errors | 1. Midplane board
2. (For FASiT EXP15 only) Make sure option switches 1 and 2 are set to Off |

Note: If you cannot find the problem using this Symptom-to-FRU Index, test the entire system.

“Power cords,” on page 135 lists required power cords for the DS4000 storage components discussed in this document by country and region.
Chapter 13. IBM TotalStorage FASST EXP500 Storage Expansion Unit

Note: The PD maps found in the IBM TotalStorage DS4000 Problem Determination Guide provide you with additional diagnostic aids.

The IBM TotalStorage FASST EXP500 storage expansion unit is compatible with the following IBM products:
- Type 3552 FASST500 RAID controller (see Chapter 8 on page 47)
- Type 1742 DS4400 storage server (see Chapter 11 on page 93)
- FASST200 type 3542 and FASST200 HA type 3542 (see Chapter 7 on page 35)

Diagnostics and test information

The following list of problems and references is for diagnosing the IBM FASST EXP500 Type 3530 storage expansion unit.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Disk Drive Numbering</td>
<td>IBM Product Installation Guide</td>
</tr>
<tr>
<td>Error Codes/Error Messages</td>
<td>Symptom-to-FRU Index for the server that the storage expansion unit you are servicing is connected to</td>
</tr>
<tr>
<td>Expansion Unit Options Switches</td>
<td>IBM Product Installation Guide</td>
</tr>
<tr>
<td>Front Controls and Indications</td>
<td>IBM Product Installation Guide</td>
</tr>
<tr>
<td>Rear Controls and Indications</td>
<td>IBM Product Installation Guide</td>
</tr>
</tbody>
</table>

Additional service information

This section provides information on the following topics:
- “Turning the expansion unit on and off”
- “Performing an emergency shutdown” on page 113
- “Restoring power after an emergency” on page 113
- “Specifications” on page 113

Turning the expansion unit on and off

This section contains instructions for turning the expansion unit on and off under normal and emergency circumstances.

If you are turning on the expansion unit after an emergency shutdown or power outage, see “Restoring power after an emergency” on page 113.

Turning on the expansion unit

Perform the following steps to turn on the power for the initial startup of the expansion unit:
1. Verify that:
 a. All communication and power cables are plugged into the back of the expansion unit and an ac power outlet.
 b. All hard disk drives are locked securely in place.
c. The tray number switches on the expansion unit are set correctly. (See the IBM Product Installation Guide for more information.)

2. Check the system documentation for all the hardware devices you intend to turn on and determine the proper startup sequence.

 Note: Be sure to turn on the IBM FASiT EXP500 before you turn on the server.

3. Turn on the power to each device, based on the startup sequence.

 Attention: If you are restarting the system after a normal shutdown, wait at least 10 seconds before you turn on the power supply switches.

4. Turn on both power supply switches on the back of the unit.

 The expansion unit might take a few seconds to power up. During this time, you might see the amber and green LEDs on the expansion unit turn on and off intermittently. When the startup sequence is complete, only the green LEDs on the front and back and the amber Bypass LEDs for unconnected GBIC ports should remain on. If other amber LEDs remain lit, see “Symptom-to-FRU index” on page 115.

Turning off the expansion unit

Attention: Except in an emergency, never turn off the power if any Fault LEDs are lit on the expansion unit. Correct the fault before you turn off the power, using the proper troubleshooting or servicing procedure. This action ensures that the expansion unit will power up correctly later. For guidance, see “Symptom-to-FRU index” on page 115.

The expansion unit is designed to run continuously, 24 hours a day. After you turn on the expansion unit, do not turn it off. Turn off the power only when:

- Instructions in a hardware or software procedure require you to turn off the power.
- A service technician tells you to turn off the power.
- A power outage or emergency situation occurs (see “Performing an emergency shutdown” on page 113).

CAUTION:

The power control button on the device and the power switch on the power supply do not turn off the electrical current supplied to the device. The device also might have more than one power cord. To remove all electrical current from the device, ensure that all power cords are disconnected from the power source.

Perform the following steps to turn off the power:

1. Check the system documentation for all hardware devices you intend to turn off and determine the proper power-down sequence.

2. Make sure that all I/O activity has stopped.

3. Make sure that all amber Fault LEDs are off. If any Fault LEDs are lit (drives, power supplies, or fans), correct the problem before you turn off the power. For guidance, see “Symptom-to-FRU index” on page 115.

4. Turn off both power supply switches on the back on the expansion unit.
Performing an emergency shutdown

Attention: Emergency situations might include fire, flood, extreme weather conditions, or other hazardous circumstances. If a power outage or emergency situation occurs, always turn off all power switches on all computing equipment. This action helps safeguard your equipment from potential damage due to electrical surges when power is restored. If the expansion unit loses power unexpectedly, it might be due to a hardware failure in the power system or midplane (see "Symptom-to-FRU index" on page 115).

Perform the following steps to shut down during an emergency:

1. If you have time, stop all activity and check the LEDs (front and back). Make note of any Fault LEDs that are lit so that you can correct the problem when you turn on the power again.
2. Turn off all power supply switches; then, unplug the power cords from the expansion unit.

Restoring power after an emergency

Perform the following steps to restart the expansion unit if you turned off the power supply switches during an emergency shut down, or if a power failure or a power outage occurred:

1. After the emergency situation is over or power is restored, check the expansion unit for damage. If there is no visible damage, continue with step 2; otherwise, have your system serviced.
2. After you have checked for damage, ensure that the power switches are in the off position; then, plug in the expansion unit power cords.
3. Check the system documentation for the hardware devices you intend to power up and determine the proper startup sequence.

Note: Be sure to turn on the FASiT EXP500 before you turn on the server.
4. Turn on the power to each device, based on the startup sequence.
5. Turn on both power supply switches on the back of the FASiT EXP500.
6. Only the green LEDs on the front and back and the amber Bypass LEDs for unconnected GBIC ports should remain on. If other amber Fault LEDs are on, see "Symptom-to-FRU index" on page 115 for instructions.
7. Use your installed software application as appropriate to check the status of the expansion unit.

Specifications

The following gives the operating specifications of the FASiT EXP500.

Size (with front panel and without mounting rails)

- Depth: 56.3 cm (22.2 in)
- Height: 12.8 cm (5 in)
- Width: 44.7 cm (17.6 in)

Weight

- Standard expansion unit as shipped: 25 kg (54.5 lbs)
- Typical expansion unit fully loaded: 35.5 kg (78 lbs)

Electrical input

- Sine-wave input (50 to 60 Hz) is required
• Input Voltage:
 – Low range:
 - Minimum: 90 V ac
 - Maximum: 127 V ac
 – High range:
 - Minimum: 198 V ac
 - Maximum: 257 V ac
 – Input kilovolt-amperes (kVA) approximately:
 - Minimum configuration: 0.06 kVA
 - Maximum configuration: 0.36 kVA

Environment
• Air temperature:
 – Expansion unit on:
 10° to 35° C
 (50° to 95° F)
 Altitude: 0 to 914 m (3000 ft.)
 – Expansion unit on:
 10° to 32° C
 (50° to 90° F)
 Altitude: 914 m (3000 ft.) to 2133 m (7000 ft.)
• Humidity:
 – 8% to 80%

Acoustical noise emissions values
For open bay (0 drives installed) and typical system configurations (8 hard drives installed).
 – Sound Power (idling):
 - 6.3 bels (open bay)
 - 6.5 bels (typical)
 – Sound Power (operating):
 - 6.3 bels (open bay)
 - 6.6 bels (typical)
 – Sound Pressure (idling):
 - 47 dBA (open bay)
 - 49 dBA (typical)
 – Sound Pressure (operating):
 - 47 dBA (open bay)
 - 50 dBA (typical)

These levels are measured in controlled acoustical environments according to ISO 7779 and are reported in accordance with ISO 9296. The declared sound power levels indicate an upper limit, below which a large portion of machines operate. Sound pressure levels in your location might exceed the average 1-meter values stated because of room reflections and other nearby noise.
Symptom-to-FRU index

Note: The PD maps found in the *IBM TotalStorage DS4000 Problem Determination Guide* provide you with additional diagnostic aids.

Use [Table 51](#) to find solutions to problems that have definite symptoms.

Table 51. Symptom-to-FRU index for FASiT EXP500 storage expansion unit

<table>
<thead>
<tr>
<th>Problem Indicator</th>
<th>Action/FRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amber LED On (Front Panel)</td>
<td>1. General Machine Fault Check for amber LED on expansion unit. Use the RAID manager software to check the status.</td>
</tr>
<tr>
<td>Amber LED On (Hard Disk Drive)</td>
<td>1. Hard Disk Drive</td>
</tr>
<tr>
<td>Amber LED On (Fan)</td>
<td>1. Fan</td>
</tr>
<tr>
<td>Amber LED On</td>
<td>1. ESM board</td>
</tr>
<tr>
<td>Amber LED On, Green LED Off (Power Supply)</td>
<td>1. Turn Power Switch On</td>
</tr>
<tr>
<td></td>
<td>2. Power cord</td>
</tr>
<tr>
<td></td>
<td>3. Reseat Power Supply</td>
</tr>
<tr>
<td></td>
<td>4. Power Supply</td>
</tr>
<tr>
<td>Amber and Green LEDs On (Power Supply)</td>
<td>1. Power Supply</td>
</tr>
<tr>
<td>All Green LEDs Off</td>
<td>1. Check AC voltage cabinet AC voltage line inputs</td>
</tr>
<tr>
<td></td>
<td>2. Power Supplies</td>
</tr>
<tr>
<td></td>
<td>3. Midplane board</td>
</tr>
<tr>
<td>Intermittent power loss to expansion unit</td>
<td>1. Check AC voltage line inputs, and cabinet power components</td>
</tr>
<tr>
<td></td>
<td>2. Power Supplies</td>
</tr>
<tr>
<td></td>
<td>3. Midplane board</td>
</tr>
<tr>
<td>One or more Green LEDs Off (Power Supply)</td>
<td>1. Turn Power Switch On</td>
</tr>
<tr>
<td></td>
<td>2. Power cord</td>
</tr>
<tr>
<td></td>
<td>3. Reseat Power Supply</td>
</tr>
<tr>
<td></td>
<td>4. Power Supply</td>
</tr>
<tr>
<td>One or more Green LEDs On (Drives)</td>
<td>1. No activity to the drive</td>
</tr>
<tr>
<td></td>
<td>2. This can be normal activity</td>
</tr>
<tr>
<td>Intermittent Power Loss</td>
<td>1. AC power or plug</td>
</tr>
<tr>
<td></td>
<td>2. Power supply</td>
</tr>
<tr>
<td></td>
<td>3. Midplane</td>
</tr>
<tr>
<td>Random errors</td>
<td>1. Midplane board</td>
</tr>
<tr>
<td>One or more Green LEDs blinking slowly. (All hard disk drives.)</td>
<td>1. Check cabling scheme</td>
</tr>
<tr>
<td></td>
<td>2. FC Cable</td>
</tr>
<tr>
<td></td>
<td>3. GBIC</td>
</tr>
<tr>
<td>Hard disk drive not visible in RAID management software.</td>
<td>1. Hard Disk Drive</td>
</tr>
<tr>
<td></td>
<td>2. Midplane Board</td>
</tr>
</tbody>
</table>
Table 51. Symptom-to-FRU index for FASTT EXP500 storage expansion unit (continued)

<table>
<thead>
<tr>
<th>Problem Indicator</th>
<th>Action/FRU</th>
</tr>
</thead>
</table>
| Amber temperature LED enabled in RAID management software. (ESM Board) | 1. Check for fan fault LED
2. Unit is overheating; check temperature.
3. ESM Board |
| Amber conflict LED on. (ESM Board) | 1. Tray numbers of ESM boards within a single FASTT EXP500 do not match |
| GBIC bypass LED.
Note: It is normal for the LED to be on when no GBIC or cable is installed. | 1. Check ESM fault LED
2. GBIC does not detect an incoming signal
 a. FC Cable
 b. GBIC or other end on the FC cable
 c. GBIC adjacent to amber LEDC cable |

Note: If you cannot find the problem using this Symptom-to-FRU Index, test the entire system. See the server documentation for detailed information on testing and diagnostic tools.

Parts listing

Figure 70 and the following table provide a parts listing for the FASTT EXP500 storage expansion unit.

![Part Diagram](image)

Figure 70. FASTT EXP500 storage expansion unit parts list

<table>
<thead>
<tr>
<th>Index</th>
<th>System (IBM FASTT EXP500 storage expansion unit - Type 3560, Model 1RU)</th>
<th>FRU No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rail Kit Left/Right (Model 1RU)</td>
<td>37L0067</td>
</tr>
<tr>
<td>2</td>
<td>Blower Assembly (Model 1RU)</td>
<td>09N7285</td>
</tr>
<tr>
<td>3</td>
<td>350-W Power Supply Assembly (Model 1RU)</td>
<td>37L0059</td>
</tr>
<tr>
<td>4</td>
<td>Electronic Module (ESM, LVD/LVD) (Model 1RU)</td>
<td>37L0103</td>
</tr>
<tr>
<td>Index</td>
<td>System (IBM FASiT EXP500 storage expansion unit - Type 3560, Model 1RU)</td>
<td>FRU No.</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---------</td>
</tr>
</tbody>
</table>
| 5 | Midplane/Frame (Model 1RU)
Note: The midplane board and frame are replaced as a unit. If either part is needed, order the above FRU. | 37L0104 |
| 6 | Decorative Bezel (Model 1RU) | 37L0074 |
| 7 | Blank Tray Assembly (Model 1RU) | 37L6708 |
| | Miscellaneous Hardware Kit (Model 1RU) | 09N7288 |
| | Line Cord, 9 Foot (Model 1RU) | 6952300 |
| | Line Cord Jumper, High Voltage (Model 1RU) | 36L8886 |

"Power cords," on page 135 lists required power cords for the DS4000 storage components discussed in this document by country and region.
Chapter 14. IBM Storage Area Network Data Gateway Router (2108-R03)

Note: The PD maps found in the IBM TotalStorage DS4000 Problem Determination Guide provide you with additional diagnostic aids.

Service Aids

The SAN Data Gateway (SDG) Router service capabilities include the following:
- LED indicators
- Power-on-self-test (POST)
- Health Check
- Event Log
- Service Port commands
- Diagnostics

LED indicators

Shown in Figure 71, the LEDs on the front panel provide a visual indication of the status and activity of the SDG and its interfaces. The LEDs are refreshed automatically about 5 times per second.

<table>
<thead>
<tr>
<th>SAN Connection</th>
<th>SCSI Channels</th>
<th>Ethernet</th>
<th>Status</th>
<th>Power</th>
<th>Ready</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>Activity</td>
<td>Status</td>
<td>Temperature</td>
<td>Alarm</td>
<td></td>
</tr>
<tr>
<td>(G=Green)</td>
<td>(A=Amber)</td>
<td>Link</td>
<td>Link Transmit Collision</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 71. SDG Router front panel LEDs

Table 52 describes the SDG Router LED indicators.

Table 52. SDG Router LED indicators

<table>
<thead>
<tr>
<th>LEDs (G=Green) (A=Amber)</th>
<th>Function</th>
<th>On</th>
<th>Off</th>
<th>Flash</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAN Connection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity (G)</td>
<td>Link traffic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status (G)</td>
<td>Link status</td>
<td>Link Active</td>
<td>No transmission (Link down)</td>
<td></td>
</tr>
<tr>
<td>SCSI (G)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity (1 and 2)</td>
<td>SCSI Activity</td>
<td>SCSI traffic</td>
<td>No SCSI traffic</td>
<td>SCSI Interface activity</td>
</tr>
<tr>
<td>ETHERNET</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link (G)</td>
<td>Status</td>
<td>Link active</td>
<td>Link down</td>
<td></td>
</tr>
<tr>
<td>Transmit (G)</td>
<td>Status</td>
<td>Transmission in progress</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 52. SDG Router LED indicators (continued)

<table>
<thead>
<tr>
<th>LEDs (G=Green) (A=Amber)</th>
<th>Function</th>
<th>On</th>
<th>Off</th>
<th>Flash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collision (A)</td>
<td>Status</td>
<td>Collision occurred</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WARNING (A)</td>
<td>Preventive</td>
<td>Temperature Warning</td>
<td>No temperature</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>failure indicator</td>
<td></td>
<td>problem</td>
<td></td>
</tr>
<tr>
<td>Alarm (A)</td>
<td>Information</td>
<td>Temperature exceeded</td>
<td>No temperature</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>problem</td>
<td></td>
</tr>
<tr>
<td>Power Main (G)</td>
<td>Information</td>
<td>Power applied</td>
<td>No power</td>
<td>N/A</td>
</tr>
<tr>
<td>Ready (G)</td>
<td>Information</td>
<td>SDG Failure if on for more</td>
<td>SDG Failure</td>
<td>Flashes during Startup cycle and once every</td>
</tr>
<tr>
<td></td>
<td></td>
<td>than 2 sec.</td>
<td></td>
<td>second thereafter (normal)</td>
</tr>
</tbody>
</table>

POST

POST is divided into two functionally distinct parts: the initial-POST (IPOST) and the secondary-POST (SPOST).

IPOST is the first stage of POST and it thoroughly tests the on-board, dynamic random-access memory (DRAM) arrays. IPOST runs from the on-board flash memory. Upon successful completion, IPOST locates SPOST, copies it to the DRAM, and then transfers program control to SPOST.

SPOST is the second stage of post. SPOST configures the SDG Router’s PCI bus. SPOST then locates, loads, and runs the licensed internal code.

Health Check

The health check program queries all subsystems for their operational status. The health check has four levels. A level 1 health check is the most basic, and health check level 4 is the most complete check.

Event Log

The SDG Router maintains an event log within its on-board flash file system. You can query these logs from the SDG Router service port. Event codes and messages that the SDG Router subsystems generate are recorded in this log file.

Service Port Commands

An extensive command set is available to manage the SDG Router, obtain Status, and run Diagnostics. The commands described in Table 53 have been extracted from the SDG Service Guide. They provide you with some basic tools to determine the functional status of the SDG Router. See Appendixes A and B of the SDG Service Guide for a description of all the commands.

Table 53. SDG Router service port commands

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>diagBoot</td>
<td>Used to transition the SDG Router from normal operation to Diagnostic mode</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>(see normalBoot below)</td>
<td></td>
</tr>
</tbody>
</table>
Table 53. SDG Router service port commands (continued)

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>diagHelp</td>
<td>Displays a list of diagnostic commands</td>
<td>122</td>
</tr>
<tr>
<td>fcShow</td>
<td>Displays the status of the fibre channel interface</td>
<td>122</td>
</tr>
<tr>
<td>fcShowDevs</td>
<td>Displays information about the devices that are accessible from the fibre channel interface</td>
<td>123</td>
</tr>
<tr>
<td>fcShowNames</td>
<td>Displays the node and port names (addresses) of the fibre channel</td>
<td>123</td>
</tr>
<tr>
<td>hardwareConfig</td>
<td>Diagnostic mode only. Stores FRU VPD information in the SDG non-volatile memory (see sysVpdShow below)</td>
<td>124</td>
</tr>
<tr>
<td>help</td>
<td>Displays a list of the commands</td>
<td>124</td>
</tr>
<tr>
<td>hlthChkHelp</td>
<td>Displays the list of health check commands</td>
<td>125</td>
</tr>
<tr>
<td>hlthChkNow</td>
<td>Initiates the health check for the SDG. Results display.</td>
<td>125</td>
</tr>
<tr>
<td>loggerDump</td>
<td>Dumps records from the system event log to the terminal console</td>
<td>126</td>
</tr>
<tr>
<td>loggerDumpCurrent</td>
<td>Dumps only the records that were logged since the system was last started.</td>
<td>126</td>
</tr>
<tr>
<td>macShow</td>
<td>Displays the Media Access Control address for the Ethernet interface</td>
<td>127</td>
</tr>
<tr>
<td>mapShowDatabase</td>
<td>Device database listing the connected devices</td>
<td>127</td>
</tr>
<tr>
<td>mapShowDevs</td>
<td>Displays the cross-reference map of device addresses</td>
<td>127</td>
</tr>
<tr>
<td>normalBoot</td>
<td>Restores the SDG to normal operating conditions. Used only to transition from diagnostic mode to normal mode.</td>
<td>128</td>
</tr>
<tr>
<td>reboot</td>
<td>Preferred method for restarting the SDG Router</td>
<td>128</td>
</tr>
<tr>
<td>scsiRescan</td>
<td>Performs a rescan of the SCSI channel(s) to look for new devices</td>
<td>128</td>
</tr>
<tr>
<td>scsiShow</td>
<td>Lists all SCSI channels and the attached devices for each channel</td>
<td>129</td>
</tr>
<tr>
<td>showBox</td>
<td>Displays a picture of the SDG that shows the components present</td>
<td>130</td>
</tr>
<tr>
<td>sysConfigShow</td>
<td>Displays current parameter settings.</td>
<td>130</td>
</tr>
<tr>
<td>sysVpdShow or sysVpdShowAll</td>
<td>Displays Vital Product Data (VPD) information</td>
<td>130</td>
</tr>
<tr>
<td>targets</td>
<td>Lists and describes each device currently attached</td>
<td>132</td>
</tr>
<tr>
<td>version</td>
<td>Lists the firmware version level</td>
<td>132</td>
</tr>
</tbody>
</table>

The following descriptions are from *Storage Area Network Data Gateway Router Installation and User’s Guide*; they also are listed in the *Storage Area Network Data Gateway Router Service Guide*.

diagBoot

Use the **diagBoot** command only to transition the SDG Router from normal operation to the special diagnostic mode. The command first ensures that the `ffs0:mt` directory exists, then it verifies that the files `diagnstk.o` and `diagnstk.rc` are in the flash file system. If they are in the root directory, it moves them to the `ffs0:mt` directory.

The **diagBoot** command copies the existing boot parameters to a file in the `ffs0:mt` directory on the SDG Router. It then installs the new boot parameters that direct the SDG Router to start using the special diagnostic startup script, `ffs0:mt/diagnstk.rc`. It renames the persistent map file `config/device.map` as `config/device.bak`. Finally, **diagBoot** issues a reboot command to put the changes into effect.
Note: Power cycling the SDG Router does not re-instate it to normal mode if previously set to diagnostic mode. Use `normalBoot` command (page 128) to re-initialize the router to normal mode.

diagHelp

The `diagHelp` command displays a list of the diagnostic commands.

```
Router > diagHelp .
```

The following commands are available in diagnostic mode only.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ddfTest</td>
<td>Test DDF Memory</td>
</tr>
<tr>
<td>e1Test</td>
<td>Test Ethernet port w/loop-back cable</td>
</tr>
<tr>
<td>fcSlotTest <portnum></td>
<td>Test specified fibre channel port w/loop-back cable</td>
</tr>
<tr>
<td>hardwareConfig</td>
<td>Re-inventory FRUs and update Vital Product Data</td>
</tr>
<tr>
<td>normalBoot</td>
<td>Shutdown and restart in normal mode</td>
</tr>
<tr>
<td>scsiChannelTest <x,y></td>
<td>Test specified SCSI Channels w/loop-back cable</td>
</tr>
</tbody>
</table>

fcShow

The `fcShow` command displays the channel status for the fibre channel interface.

The following example is for an SDG Router single-port fibre channel PMC card (ISP2200 controller). The firmware state for interfaces that have a live connection to a fibre channel device are shown as Ready. An interface that has no live connection shows as Sync Lost.

```
Router > fcShow
-----------------------------------------------
Fibre Channel Controllers
-----------------------------------------------
Id : Bs Dv Fn : Type : State : Version : Addr : Addr : ID}
-----------------------------------------------
1 : 00 06 00 : 2200 : Ready : 2.01.2 : c0d98700 : 90001100 : 2 1
-----------------------------------------------
value = 80 = 0x50 = 0Pc
Router >
```

The following list describes the example fields:

- **Ctlr ID** The channel number for this interface
- **PCI Addr** The PCI address of the interface, showing bus, device ID, and function number
- **ISPType** The type of fibre channel controller, ISP2100 or ISP2200
- **Firmware State** The current state of the interface as reported by the fibre channel PMC adapter firmware. The firmware states are:
 - **Configuration Wait**: Firmware is not initialized.
 - **Waiting for AL_PA**: Firmware is performing or waiting to perform loop initialization.
 - **Waiting for login**: Firmware is attempting port and process logins with all loop ports.
 - **Ready**: Indicates that the interface is connected, operational and ready to process SCSI commands. Any other value indicates intermediate states or interface failure.
• **Sync Lost**: The firmware has detected a loss-of-sync condition and is resynchronizing the serial link receiver. This is the state reported when the fibre channel link does not detect a connection to a fibre channel device.

• **Error**: The firmware detected an unrecoverable error condition.

• **Nonparticipating**: The firmware is not participating on the loop because it did not acquire an arbitrated loop physical address (AL_PA) during initialization.

• **Failed**: The firmware is not responding to commands.

FW Version The version of firmware on the fibre channel PMC adapter

Ctrl Addr A pointer to an internal data structure that is used for some diagnostic operations

Nvram Addr The memory address of the parameter RAM for this interface

Loop ID The fibre channel loop ID for this interface

fcShowDevs

The `fcShowDevs` command displays information about the devices that are accessible from each fibre channel interface, as the following example shows. The display shows the LUN that the SDG Router has assigned to each device, the SCSI Channel that the device is attached to, the actual SCSI ID and LUN of the device, the vendor, product, revision, and serial number of the device.

```
Router > fcShowDevs
FC 1:
LUN Chan Id Lun Vendor Product Rev SN
--------------------------------------------------------------------------------
0 0 0 OPATHLIGHT SAN Router Local 0252 00000060450d00c0
2 3 4 IBM 03570c11 5324 000000000260
3 3 4 IBM 03570c11 5324 000000000260
value = 3 = 0x3
Router > Router > fcShowDevs
FC 1:
LUN Chan Id Lun Vendor Product Rev SN
--------------------------------------------------------------------------------
0 0 0 OPATHLIGHT SAN Router 0339 00000060451600db
1 1 0 ATL L500 6320000 001E JF91101163
2 1 1 QUANTUM DL7700 2150 CX921S1423
4 1 2 QUANTUM DL7700 2150 CX905S4607
6 2 0 QUANTUM Powerstor L200 001E JN81477118
8 2 1 QUANTUM DL7700 2150 CX919S5223
LUN Chan Id Lun Vendor Product Rev SN
FC 4:
0 0 0 OPATHLIGHT SAN Router 0339 00000060451600db
--------------------------------------------------------------------------------
1 1 0 ATL L500 6320000 001E JF91101163
2 1 1 QUANTUM DL7700 2150 CX921S1423
4 1 2 QUANTUM DL7700 2150 CX905S4607
6 2 0 QUANTUM Powerstor L200 001E JN81477118
8 2 1 QUANTUM DL7700 2150 CX919S5223
value =6 =0x6
Router >
```

fcShowNames

The `fcShowNames` command displays the node and port names (addresses) of the fibre channels.

Chapter 14. IBM Storage Area Network Data Gateway Router (2108-R03) 123
The following list describes the example fields:

Ctlr Id The channel number for the interface

PCI Addr The PCI address of the interface, showing bus, device ID, and function number

ISPType The type of fibre channel controller, ISP2100 or ISP2200

Node Name The fibre channel node name for the SDG Router

Port Name The fibre channel port name for the interface

hardwareConfig

In order to use this command, the SDG Router must be in diagnostic mode. The `hardwareConfig` command records the configurations of installed FRUs by copying them to the nonvolatile vital product data (VPD) stored on the SDG Router base. See the following example.

The fields that are updated are the SCSI channel types and PMC type. The service representative enters the `hardwareConfig` command after replacing any FRUs, which causes the SDG Router to update the VPD.

help

The `help` command displays a list of the shell commands, as the following example shows.
hlthChkHelp

The **hlthChkHelp** command displays a list of the health check commands, as the following example shows.

```
Router > hlthChkHelp
hlthChkIntervalGet - Show Check Interval
.hlthChkIntervalSet <interval> - Set Check Interval
.hlthChkLevelGet - Show Check Level
.hlthChkLevelSet <level> - Set Check Level
.hlthChkNow - Run Health Check Now
```
The command causes the SDG Router to run an immediate, level 4 health check. Results display that indicate which devices or subsystems failed the check.

```
Router> hlthChkNow
```

loggerDump [number]

The `loggerDump` command dumps records from the system event log to the console. You can use a numeric parameter to indicate the number of events to display. With no parameter specified, all events in the log file display starting with the most recent events, as the following example shows.

```
Router > loggerDump 4
*** Dumping 4 (1018 through 1021) of 1021 records ***
000008 1018 0d:00h:00m:07s:22t -- SCSI 2: Bus RESET
000009 1019 0d:00h:00m:07s:22t -- Target device added: index 0, handle 0xc0ec2600
000010 1020 0d:00h:00m:08s:18t -- Target device added: index 10, handle 0xc0ad2590
000011 1021 0d:00h:00m:08s:28t -- SCSI 2: New Device at Id 6, Lun 0
Router >
```

loggerDumpCurrent [level]

The `loggerDumpCurrent` command dumps records from the system event log to the console. Only the records that were logged since the system was last started are dumped. Level specifies the event log level for the events as shown in Table 54.

<table>
<thead>
<tr>
<th>Level</th>
<th>Name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Private</td>
<td>Events that are never shown by the remote event viewer but are recorded in the SDG Router event log</td>
</tr>
<tr>
<td>1</td>
<td>Notice</td>
<td>Conditions that should always be reported, such as temperature alarms and device removals</td>
</tr>
<tr>
<td>2</td>
<td>Warning</td>
<td>Events that might result in a later problem</td>
</tr>
<tr>
<td>3</td>
<td>Information</td>
<td>Events that are not errors or warnings</td>
</tr>
</tbody>
</table>

The following example shows a dump after a typical start sequence with four target devices added (one additional device shows, which is the command and control LUN of the SDG Router itself).

```
Router > loggerDumpCurrent 1
*** Dumping 9 (1010 through 1018) current records with level >= 0 ***
000001 0d:00h:00m:05s:56t -- NOTICE: CS and LOGGING STARTED
000002 0d:00h:00m:07s:19t -- FCAL 1: LIP occurred
000003 0d:00h:00m:07s:19t -- FCAL 1: Loop up
000004 0d:00h:00m:07s:22t -- SCSI 1: Bus RESET
000005 0d:00h:00m:07s:22t -- SCSI 2: Bus RESET
000006 0d:00h:00m:07s:22t -- Target device added: index 0, handle 0xc0ec2600
000007 0d:00h:00m:08s:18t -- Target device added: index 9, handle 0xc1f9e090
000008 0d:00h:00m:08s:18t -- Target device added: index 10, handle 0xc0ad2590
000009 0d:00h:00m:08s:28t -- SCSI 2: New Device at Id 6, Lun 0
value = 0 = 0x0
Router >
```
macShow

The **macShow** command displays the media access control (MAC) address for the Ethernet interface, as the following example shows.

```
Router > macShow
Enet MAC Address: 0.60.45.d.0.80
value = 33 = 0x21 = ©!©
Router >
```

mapShowDatabase

The SDG Router maintains a database of attached devices to ensure that each time a host attaches to the SDG Router, the target devices are seen at a consistent address. The database lists not only the devices presently connected, but also devices that were previously connected. If a previously attached device is later reattached, it is assigned its previous address. Use the **mapShowDatabase** command to display the persistent device map table.

```
Router > mapShowDatabase
devId Type Chan tId tLun UID
-----------------------------------------------
000 SNA 127 127 000000060:450d00c0
001 SCSI 001 003 000 000000060:450d00c0
002 SCSI 001 002 000 000000060:450d00c0
003 SCSI 001 001 000 000000060:450d00c0
004 SCSI 002 002 000 000000060:450d00c0
005 SCSI 002 000 000 000000060:450d00c0
006 SCSI 002 006 000 000000060:450d00c0
007 SCSI 002 009 000 000000060:450d00c0
008 SCSI 002 002 001 000000060:450d00c0
009 SCSI 002 005 000 000000060:450d00c0
010 SCSI 002 005 001 000000060:450d00c0
011 SCSI 001 000 000 000000060:450d00c0
012 SCSI 001 006 000 000000060:450d00c0
value = 0 = 0x0
Router >
```

The following list describes the example fields:

- **devId** The index of the device in the database
- **Type** The type of interface where the device is connected. SNA indicates an internal device. SCSI or fibre channel indicate I/O interfaces.
- **Chan** The channel number of the interface where the device is attached
- **tId** Target ID mapping for SCSI initiators
- **tLun** Target LUN mapping for SCSI initiators
- **UID** For a fibre channel interface, the unique ID of the device. For SCSI interface, the unique ID of the SDG Router.

mapShowDevs

The SDG Router maintains a cross-reference map of device addresses. You can display information about the presently attached and available devices in the map by using the **mapShowDevs** command.
The following list describes the example fields:

- **devId**: The index of the device in the database
- **Type**: The type of interface where the device is attached to the SDG Router
- **Chan**: The channel number of the interface
- **iId**: For a SCSI interface only, device ID of the device
- **tLun**: For a SCSI interface only, the LUN of the device
- **UID**: For a fibre channel interface, unique ID of the device. For SCSI interface, a constructed unique ID based on the unique ID of SDG Router.
- **tId**: Target ID mapping for SCSI initiators
- **tLun**: Target LUN mapping for SCSI initiators
- **Handle**: An internal pointer used for some diagnostic operations
- **Itl**: An internal pointer used for some diagnostic operations

normalBoot

Certain commands and tests are only available in diagnostic mode. Switching to diagnostic mode saves all configuration parameters so that they are restored before returning to normal operation. Use the `normalBoot` command to restore the SDG Router to normal operating conditions.

This command is used only to transition a SDG Router from the special diagnostic mode to normal operations. It restores the boot parameters that were copied by `diagBoot`. The new persistent device map is erased, and the original map file is renamed config/device.map restoring it for use when the SDG Router restarts. The `normalBoot` command then restarts the SDG Router.

reboot

The `reboot` command requests that the SDG Router shut down existing operations and then restart. This is the preferred method of restarting the SDG Router. There are processes running within the SDG Router that might have writes pending to files within the SDG Router’s flash file system. Following a `reboot` command, these processes flush their data to the flash file system, and the flash file system writes all pending data out to the flash memory. The SDG Router starts a reset cycle only after all pending data has been successfully written to the flash file system.

```
Router > reboot
```

```
scsiRescan [channel]
```
The `scsiRescan` command requests a SCSIrescan to look for new devices. If channel is specified (1 or 2), then only that channel is scanned. If channel is not specified or if channel is 0, then all channels are scanned.

Notes:

1. Rescanning a SCSI bus can delay I/O commands pending on that bus for several seconds. Do not rescan SCSI buses when this delay cannot be tolerated. If possible, scan only the bus where a new device has been added.
2. If a channel is specified, that channel is scanned and the prompt is returned on completion. If no channel is specified (or 0 is specified), SCSI channels 1 and 2 are scanned in sequence and the prompt is returned on completion.
3. When a device is discovered, there can be further device specific initialization that continues after the scan has completed. In this case, the device might not show up immediately when you issue the `fcShowDevs` command. (Tape and changer devices that indicate a ready status are available after the scan is completed.)
4. If a SCSI target device requires replacement, remove the old device. Set the new device to the same SCSI bus ID as the old device and attach it to the same channel. Rescan the channel to update the configuration data. The new device should be available to host systems with the same LUN as the old device.

scsiShow

The `scsiShow` command lists all SCSI channels and the attached devices for each channel.

<table>
<thead>
<tr>
<th>Router > scsiShow</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSI Initiator Channel 1: 0xc195e670</td>
<td></td>
</tr>
<tr>
<td>**ID LUN Vendor Product Rev</td>
<td>Sync/Off Width**</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>0 0 IBMAS400 DFHSS4W 4545</td>
<td>12/15 16 S W Q</td>
</tr>
<tr>
<td>SCSI Initiator Channel 2: 0xc0ed3900</td>
<td></td>
</tr>
<tr>
<td>**ID LUN Vendor Product Rev</td>
<td>Sync/Off Width**</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>4 0 IBM 0357011 5324</td>
<td>25/15 16 S W</td>
</tr>
<tr>
<td>4 1 IBM 0357011 5324</td>
<td></td>
</tr>
<tr>
<td>value = 0 = 0x0</td>
<td></td>
</tr>
<tr>
<td>Router ></td>
<td></td>
</tr>
</tbody>
</table>

The following list describes the example fields:

- **ID** The SCSI ID of the target device
- **LUN** The SCSI LUN of the target device
- **Vendor** The content of the Vendor ID field from the SCSI inquiry data
- **Product** The content of the Product ID field from the SCSI inquiry data
- **Rev** The content of the Revision ID field from the SCSI inquiry data
- **Sync/Off** The negotiated synchronous transfer period and offset. The period is the negotiated transfer period. Multiply the period times 4 ns. to determine the actual period. However, if the period is negotiated to 12, then 50 ns. is used. The offset indicates the request/acknowledge (REQ/ACK) offset that was negotiated. A zero in these fields indicates that asynchronous transfer is in use.
Width The negotiated transfer width in bits, either 8 or 16

showBox

The showBox command displays the components currently in the SDG Router using characters to form a picture of the unit, as viewed from the rear. Figure 72 demonstrates how the showBox command displays a SDG Router that has a single-port fibre channel PMC installed.

Note: For SAN connection port-number assignments, see the Storage Area Network Data Gateway Router Service Guide.

```
Front //|                 //|
  // /---------------------------// |
  // /                           |
  // /                           |
  // /   /----//--               |
  //===//    //                  |
  //---------------------------/ |
  | [SET=]                    |
  | [FCCW]                    |
  | [SEQ=]                    |
  | Back                      |

SET = SCSI Single Ended - Terminated
FCCW = FibreChannel Optical Short Wave

SCSI-1 requires Single Ended cable
SCSI-2 requires Single Ended cable
FCCW-1 slot-1 requires FibreChannel Multi-Mode (SM) cable
```

Figure 72. SDG Router showBox command output

sysConfigShow

The sysConfigShow command displays the current system parameter settings.

The display shows whether the SDG Router command and control interface is enabled or disabled. It also shows the LUN that is assigned to it, whether enhanced tape performance features are enabled, the MAC address of the Ethernet port, and the SDG Router fibre channel node address.

```
Router > sysConfigShow
Current System Parameter Settings:
  Command and Control Device (CC) : 0 Enabled
  LUN : 0
  Allow Early Write Status for Tape : 1 Enabled
  Allow R/W Acceleration for Tape : 1 Enabled
  Enet MAC Address: 0.60.45.16.1.4
  FC Node WWN: 10000060.45160104
  value =0 =0x0 Router >
```

sysVpdShow or sysVpdShowAll

The sysVpdShow command displays vital product data (VPD) information. The VPD for the SDG Router includes such items as serial numbers and installed memory sizes.
Router > sysVpdShow
====== VPD ======
name SAN Router
uid 00:60:45:16:01:04
s/n 100111
mfg Pathlight Tech
board OntarioII 1.1
" s/n 00357659
flash 2Mbyte
dram 32Mbyte
slot1 10772100 FCOSW
scsi 1: DET 2: DET
EC 0TA0B000H
RID Tag
value =0 =0x0
Router >

The following list describes the example fields:

name Product name: up to 16 characters

uid Unique Ethernet MAC address of the product: 32 characters displayed as hexadecimal bytes separated by colons

s/n Product serial number: up to 16 characters

mfg Product manufacturer: up to 16 characters

board Name of the system board contained in the base unit: up to 16 characters

" **s/n** System board serial number: up to 16 characters

flash Size of the flash memory on the system board

dram Size of the DRAM on the system board

slot1 Card type installed in SAN connection slot one

scsi 1 SCSI type for each of the two channels, DET for "differential, terminated" and SET for "single-ended, terminated"

EC Engineering change (EC) level for the system board: up to 16 characters

RID RID tag identifier: up to 16 characters

The **sysVpdShowAll** command shows more information and includes product data for the fibre channel PMC card, as the following example shows.
Router > sysVpdShowAll
=== [Vital Product Data]===
== [Base Assembly]==
Name SAN Data Gateway Router
Mfg Pathlight Tech
UID 00:60:45:16:01:04
S/N 100111 Assy HCO OTA08000H
Assy HCO OTA08000H
Board OntarioII 1.1
* S/N 08357659
Flash 2 Mbyte
Dram 32 Mbyte
RID Tag 100111
== [Slot 1]==
Type 10772100 FCOSW
S/N 123456
UID 0060.45160065
HCO SCO04120H
value = 0 = 0x0
Router >

targets

The SDG Router maintains a list of target devices that are attached to the I/O channels. The `targets` command lists each device that is currently attached and provides a description of each device.

```
Router > targets
Idx  Tdev  Vendor  Product  Rev  |  Type    Specific
-----------------------------------------------
0  0xc194a400  PATHLGT  SAN Router  Local 0252 | Cmd/Cntrl Status 0h
2  0xc1ffc390  IBM  03570C11 5324  |  Tape: Blk Size 32768, flags 7h
3  0xc1ffc290  IBM  03570C11 5324  |  Changer: flags 7h
value = 4 = 0x4
Router >
```

The following list describes the example fields:

- **Idx** Device Index in the target list
- **Tdev** An internal pointer, used for some diagnostic operations
- **Vendor** Content of the Vendor ID field from the SCSI Inquiry Data
- **Product** Content of the Product ID field from the SCSI Inquiry Data
- **Rev** Content of the Revision ID field from the SCSI Inquiry Data
- **Type Specific** For each device type, information pertinent to the device

version

The SDG Router has software that controls all functions. The `version` command displays the revision of that operating software. The first line displayed is the SDG Router firmware version. The lines that follow pertain to the operating system software version.
Diagnostics

The diagnostic suite is a subset of the manufacturing test program. When enabled, the diagnostic suite is capable of performing external loopback testing of all major hardware interfaces (SCSI, fibre channel, and Ethernet).

Toolkit P/N 34L2606 (supplied with the Router) contains the necessary loopback plugs to run the Diagnostics. It includes the following hardware:

- Service port cable: One RS-232 null-modem cable with 9-pin connectors
- SCSI loopback cable: One short wide-Ultra cable with 68-pin connectors
- Fibre channel: One fibre channel short-wavelength or long-wavelength fiber-optic loopback plug
- Ethernet: One 10BASE-T Ethernet loopback cable
- Fuses: Two 250 V, 4 A time-lag fuses (type F4AL)

Diagnostic tests

To verify proper operation of the SDG or whenever a FRU has been replaced, a complete diagnostic check of the router can be performed. It is recommended that you perform these tests prior to returning the SDG Router to the customer.

Diagnostic test preparation

Perform the following steps to verify proper operation of the SDG or a replaced FRU:

1. Attach the service terminal to the SDG Router.
2. Turn on the SDG Router and wait until it has finished the startup cycle.
3. From the service terminal, type diagBoot.
4. Wait until the SDG Router has finished the startup cycle. The Shell prompt should be diagmode>.
5. From the service terminal, type showBox.
6. Verify that the SDG Router is configured according to the customer’s requirements:
 a. If all installed FRUs are shown, go to "Fibre channel tests".
 b. If all installed FRUs are not shown, see Chapter 3 of the 2108 Model R03 Service Guide (MAP).

Fibre channel tests

Perform the following steps to verify proper fibre channel operation:

1. Attach the fibre channel loopback plug to the card in PMC slot 1. (You can also use the plug from FAStT MSJ).

 Note: This test works only if the card is an ISP2200. If the card is an ISP 2100, the following error displays: Card in slot 0 is not fibre channel. You can also run FAStT MSJ to verify if the SDG Router is being detected. However, you cannot run the diagnostics (Loopback and Read/Write Buffer test) on the SDG Router.

2. From the service terminal, type fcSlotTest 1
a. If the `fcSlotTest` test completes successfully, remove the loopback plug and go to "SCSI test".

b. If not, see Chapter 3 of the 2108 Model R03 Service Guide (MAP).

SCSI test

Perform the following steps to verify proper SCSI operation:

1. If there is only one SCSI interface installed, proceed to "Ethernet Test".
2. Attach the SCSI loopback cable to SCSI channels 1 and 2.
3. From the service terminal, type `scsiChannelTest 1, 2`.
 a. If the test completes successfully, go to step 4.
 b. If not, see Chapter 3 of the 2108 Model R03 Service Guide (MAP).
4. Remove the SCSI loopback cable.
5. Proceed to "Ethernet Test".

Ethernet test

Perform the following steps to verify proper Ethernet operation:

1. Obtain the SDG Router Ethernet network parameters from the customer. Configure the Ethernet port host name, address, routes, and enable the Ethernet. See the IBM TotalStorage DS4000 Product Installation Guide.
2. Attach the Ethernet loopback plug to the Ethernet port.
3. From the service terminal, type `elTest`.
4. If the test completes successfully, go to step 5. If not, see Chapter 3 of the 2108 Model R03 Service Guide (MAP).
5. Remove the Ethernet loopback plug.

Verifying SDG Router operation

Perform the following steps to verify proper SDG operation:

1. From the service terminal, type `normalBoot`.
2. Wait until the SDG Router has finished the startup cycle. The Ready light should be blinking once every second, indicating the SDG Router POST was successful. If the light remains on or is off, see Chapter 3 of the 2108 Model R03 Service Guide (MAP).
Appendix. Power cords

For your safety, IBM provides a power cord with a grounded attachment plug to use with this IBM product. To avoid electrical shock, always use the power cord and plug with a properly grounded outlet.

IBM power cords used in the United States and Canada are listed by Underwriter’s Laboratories (UL) and certified by the Canadian Standards Association (CSA).

For units intended to be operated at 115 volts: Use a UL-listed and CSA-certified cord set consisting of a minimum 18 AWG, Type SVT or SJT, three-conductor cord, a maximum of 15 feet in length and a parallel blade, grounding-type attachment plug rated 15 amperes, 125 volts.

For units intended to be operated at 230 volts (U.S. use): Use a UL-listed and CSA-certified cord set consisting of a minimum 18 AWG, Type SVT or SJT, three-conductor cord, a maximum of 15 feet in length and a tandem blade, grounding-type attachment plug rated 15 amperes, 250 volts.

For units intended to be operated at 230 volts (outside the U.S.): Use a cord set with a grounding-type attachment plug. The cord set should have the appropriate safety approvals for the country in which the equipment will be installed.

IBM power cords for a specific country or region are usually available only in that country or region.

<table>
<thead>
<tr>
<th>IBM power cord part number</th>
<th>Cord specifics</th>
<th>Used in these countries or regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>13F9940</td>
<td>250V/10A</td>
<td>Australia, Fiji, Kiribati, Nauru, New Zealand, Papua New Guinea</td>
</tr>
<tr>
<td>13F9979</td>
<td>250V/10A</td>
<td>Afghanistan, Albania, Algeria, Andorra, Angola, Armenia, Austria, Azerbaijan, Belarus, Belgium, Benin, Bosnia and Herzegovina, Bulgaria, Burkina Faso, Burundi, Cambodia, Cameroon, Cape Verde, Central African Republic, Chad, Comoros, Congo (Democratic Republic of), Congo (Republic of), Cote D’Ivoire (Ivory Coast), Croatia (Republic of), Czech Rep, Dahomey, Djibouti, Egypt, Equatorial Guinea, Eritrea, Estonia, Ethiopia, Finland, France, French Guiana, French Polynesia, Gabon, Georgia, Germany, Greece, Guadeloupe, Guinea, Guinea Bissau, Hungary, Iceland, Indonesia, Iran, Kazakhstan, Kyrgyzstan, Laos (Peoples Democratic Republic of), Latvia, Lebanon, Lithuania, Luxembourg, Macedonia (former Yugoslav Republic of), Madagascar, Mali, Martinique, Mauritania, Mauritius, Mayotte, Moldova (Republic of), Monaco, Mongolia, Morocco, Mozambique, Netherlands, New Caledonia, Niger, Norway, Poland, Portugal, Reunion, Romania, Russian Federation Rwanda, Sao Tome and Principe, Saudi Arabia, Senegal, Serbia, Slovakia, Slovenia (Republic of), Somalia, Spain, Suriname, Sweden, Syrjan Arab Republic, Tajikistan, Tahiti, Togo, Tunisia, Turkey, Turkmenistan, Ukraine, Upper Volta, Uzbekistan, Vanuatu, Vietnam, Wallis and Futuna, Yugoslavia (Federal Republic of), Zaire</td>
</tr>
<tr>
<td>IBM power cord part number</td>
<td>Cord specifics</td>
<td>Used in these countries or regions</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>13F9997</td>
<td>250V/10A, 2.8M</td>
<td>Denmark</td>
</tr>
<tr>
<td>14F0015</td>
<td>250V/10A, 2.8M</td>
<td>Bangladesh, Lesotho, Maceo, Maldives, Namibia, Nepal, Pakistan, Samoa, South Africa, Sri Lanka, Swaziland, Uganda</td>
</tr>
<tr>
<td>14F0033</td>
<td>250V/10A, 2.8M</td>
<td>Abu Dhabi, Bahrain, Botswana, Brunei Darussalam, Channel Islands, Cyprus, Dominica, Gambia, Ghana, Grenada, Guyana, Hong Kong S.A.R. of China, Iraq, Ireland, Jordan, Kenya, Kuwait, Liberia, Malawi, Malaysia, Malta, Myanmar (Burma), Nigeria, Oman, Qatar, Saint Kitts & Nevis, Saint Lucia, Saint Vincent and the Grenadines, Seychelles, Sierra Leone, Singapore, Sudan, Tanzania (United Republic of), Trinidad & Tobago, United Arab Emirates (Dubai), United Kingdom, Yemen, Zambia, Zimbabwe</td>
</tr>
<tr>
<td>14F0051</td>
<td>250V/10A, 2.8M</td>
<td>Liechtenstein, Switzerland</td>
</tr>
<tr>
<td>14F0069</td>
<td>250V/10A, 2.8M</td>
<td>Chile, Italy, Libyan Arab Jamahiriya</td>
</tr>
<tr>
<td>14F0087</td>
<td>250V/10A, 2.8M</td>
<td>Israel</td>
</tr>
<tr>
<td>1838574</td>
<td>250V/10A, 2.8M</td>
<td>Antigua and Barbuda, Aruba, Bahamas, Barbados, Belize, Bermuda, Bolivia, Brazil, Caycos Islands, Canada, Cayman Islands, Costa Rica, Columbia, Cuba, Dominican Republic, Ecuador, El Salvador, Guam, Guatemala, Haiti, Honduras, Jamaica, Japan, Mexico, Micronesia (Federal States of), Netherlands Antilles, Nicaragua, Panama, Peru, Philippines, Taiwan, United States, Venezuela</td>
</tr>
<tr>
<td>36L8880</td>
<td>250V/10A, 2.8M</td>
<td>Argentina, Paraguay, Uruguay</td>
</tr>
<tr>
<td>02K0546</td>
<td>250V/6A, 2.8M</td>
<td>PRC (China)</td>
</tr>
<tr>
<td>6952300</td>
<td>125V/10A, 2.8M</td>
<td>Antigua and Barbuda, Aruba, Bahamas, Barbados, Belize, Bermuda, Bolivia, Cayman Islands, Costa Rica, Columbia, Cuba, Dominican Republic, Ecuador, El Salvador, Guam, Guatemala, Haiti, Honduras, Jamaica, Mexico, Micronesia (Federal States of), Netherlands Antilles, Nicaragua, Panama, Peru, Philippines, Saudi Arabia, Taiwan, Thailand, Turks and Caicos Islands, United States, Venezuela</td>
</tr>
<tr>
<td>6952301</td>
<td>125V/10A, 1.8M</td>
<td></td>
</tr>
</tbody>
</table>

IBM TotalStorage DS4000: Hardware Maintenance Manual
Notices

This publication was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product, and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM
e (logo) server
AIX
AT®
FlashCopy®

© Copyright IBM Corp. 2004
Intel and Pentium® III are trademarks of Intel Corporation in the United States, other countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be the trademarks or service marks of others.

Important notes

Processor speeds indicate the internal clock speed of the microprocessor; other factors also affect application performance.

CD-ROM drive speeds list the variable read rate. Actual speeds vary and are often less than the maximum possible.

When referring to processor storage, real and virtual storage, or channel volume, KB stands for approximately 1000 bytes, MB stands for approximately 1000000 bytes, and GB stands for approximately 1000000000 bytes.

When referring to hard disk drive capacity or communications volume, MB stands for 1 000 000 bytes, and GB stands for 1 000 000 000 bytes. Total user-accessible capacity may vary depending on operating environments.

Maximum internal hard disk drive capacities assume the replacement of any standard hard disk drives and population of all hard disk drive bays with the largest currently supported drives available from IBM.

Maximum memory may require replacement of the standard memory with an optional memory module.

IBM makes no representation or warranties regarding non-IBM products and services that are ServerProven®, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. These products are offered and warranted solely by third parties.

Unless otherwise stated, IBM makes no representations or warranties with respect to non-IBM products. Support (if any) for the non-IBM products is provided by the third party, not IBM.

Some software may differ from its retail version (if available), and may not include user manuals or all program functionality.

Electronic emission notices

Federal Communications Commission (FCC) statement

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are
designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

Properly shielded and grounded cables and connectors must be used in order to meet FCC emission limits. IBM is not responsible for any radio or television interference caused by using other than recommended cables and connectors or by unauthorized changes or modifications to this equipment. Unauthorized changes or modifications could void the user’s authority to operate the equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Chinese class A compliance statement

Attention: This is a class A statement. In a domestic environment, this product might cause radio interference in which case the user might be required to take adequate measures.

Industry Canada Class A emission compliance statement

This Class A digital apparatus complies with Canadian ICES-003.

Avis de conformité à la réglementation d’Industrie Canada

Cet appareil numérique de la classe A est conforme à la norme NMB-003 du Canada.

Australia and New Zealand Class A statement

Attention: This is a Class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

United Kingdom telecommunications safety requirement

Notice to Customers

This apparatus is approved under approval number NS/G/1234/J/100003 for indirect connection to public telecommunication systems in the United Kingdom.

European Union EMC Directive conformance statement

This product is in conformity with the protection requirements of EU Council Directive 89/336/EEC on the approximation of the laws of the Member States
relating to electromagnetic compatibility. IBM cannot accept responsibility for any failure to satisfy the protection requirements resulting from a nonrecommended modification of the product, including the fitting of non-IBM option cards.

This product has been tested and found to comply with the limits for Class A Information Technology Equipment according to CISPR 22/European Standard EN 55022. The Limits for Class A equipment were derived for commercial and industrial environments to provide reasonable protection against interference with licensed communication equipment.

Attention: This is a Class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

Taiwan electrical emission statement

警告使用者：
這是甲類的資訊產品，在居住的環境中使用時，可能會造成射頻干擾，在這種情況下，使用者會被要求採取某些適當的對策。

Japanese Voluntary Control Council for Interference (VCCI) statement

この装置は、情報処理装置等電波障害自主規制協議会（V C C I）の基準に基づくクラスA情報技術装置です。この装置を家庭環境で使用すると電波妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ずるよう要求されることがあります。
Glossary

This glossary provides definitions for the terminology and abbreviations used in IBM TotalStorage DS4000 publications.

If you do not find the term you are looking for, see the IBM Glossary of Computing Terms located at the following Web site:

www.ibm.com/ibm/terminology

This glossary also includes terms and definitions from:

• Information Technology Vocabulary by Subcommittee 1, Joint Technical Committee 1, of the International Organization for Standardization and the International Electrotechnical Commission (ISO/IEC JTC1/SC1). Definitions are identified by the symbol (I) after the definition; definitions taken from draft international standards, committee drafts, and working papers by ISO/IEC JTC1/SC1 are identified by the symbol (T) after the definition, indicating that final agreement has not yet been reached among the participating National Bodies of SC1.

The following cross-reference conventions are used in this glossary:

See Refers you to (a) a term that is the expanded form of an abbreviation or acronym, or (b) a synonym or more preferred term.

See also Refers you to a related term.

accelerated graphics port (AGP). A bus specification that gives low-cost 3D graphics cards faster access to main memory on personal computers than the usual peripheral component interconnect (PCI) bus. AGP reduces the overall cost of creating high-end graphics subsystems by using existing system memory.

access volume. A special logical drive that allows the host-agent to communicate with the controllers in the storage subsystem.

adapter. A printed circuit assembly that transmits user data input/output (I/O) between the internal bus of the host system and the external fibre-channel (FC) link and vice versa. Also called an I/O adapter, host adapter, or FC adapter.

advanced technology (AT) bus architecture. A bus standard for IBM compatibles. It extends the XT bus architecture to 16 bits and also allows for bus mastering, although only the first 16 MB of main memory are available for direct access.

AGP. See accelerated graphics port.

AL_PA. See arbitrated loop physical address.

arbitrated loop. One of three existing fibre-channel topologies, in which 2 - 126 ports are interconnected serially in a single loop circuit. Access to the Fibre Channel-Arbitrated Loop (FC-AL) is controlled by an arbitration scheme. The FC-AL topology supports all classes of service and guarantees in-order delivery of FC frames when the originator and responder are on the same FC-AL. The default topology for the disk array is arbitrated loop. An arbitrated loop is sometimes referred to as a Stealth Mode.

arbitrated loop physical address (AL_PA). An 8-bit value that is used to uniquely identify an individual port within a loop. A loop can have one or more AL_PAs.

array. A collection of fibre-channel or SATA hard drives that are logically grouped together. All the drives in the array are assigned the same RAID level. An array is sometimes referred to as a "RAID set." See also redundant array of independent disks (RAID), RAID level.

asynchronous write mode. In remote mirroring, an option that allows the primary controller to return a write I/O request completion to the host server before data has been successfully written by the secondary controller. See also synchronous write mode, remote mirroring, Global Copy, Global Mirroring.

AT. See advanced technology (AT) bus architecture.

ATA. See AT-attached.
AT-attached. Peripheral devices that are compatible with the original IBM AT computer standard in which signals on a 40-pin AT-attached (ATA) ribbon cable followed the timings and constraints of the Industry Standard Architecture (ISA) system bus on the IBM PC AT computer. Equivalent to integrated drive electronics (IDE).

auto-volume transfer/auto-disk transfer (AVT/ADT). A function that provides automatic failover in case of controller failure on a storage subsystem.

AVT/ADT. See auto-volume transfer/auto-disk transfer.

AWT. See Abstract Windowing Toolkit.

basic input/output system (BIOS). The personal computer code that controls basic hardware operations, such as interactions with diskette drives, hard disk drives, and the keyboard.

BIOS. See basic input/output system.

BOOTP. See bootstrap protocol.

bootstrap protocol (BOOTP). In Transmission Control Protocol/Internet Protocol (TCP/IP) networking, an alternative protocol by which a diskless machine can obtain its Internet Protocol (IP) address and such configuration information as IP addresses of various servers from a BOOTP server.

bridge. A storage area network (SAN) device that provides physical and transport conversion, such as fibre channel to small computer system interface (SCSI) bridge.

bridge group. A bridge and the collection of devices connected to it.

broadcast. The simultaneous transmission of data to more than one destination.

cathode ray tube (CRT). A display device in which controlled electron beams are used to display alphanumeric or graphical data on an electroluminescent screen.

client. A computer system or process that requests a service of another computer system or process that is typically referred to as a server. Multiple clients can share access to a common server.

command. A statement used to initiate an action or start a service. A command consists of the command name abbreviation, and its parameters and flags if applicable. A command can be issued by typing it on a command line or selecting it from a menu.

community string. The name of a community contained in each Simple Network Management Protocol (SNMP) message.

concurrent download. A method of downloading and installing firmware that does not require the user to stop I/O to the controllers during the process.

CRC. See cyclic redundancy check.

CRT. See cathode ray tube.

CRU. See customer replaceable unit.

customer replaceable unit (CRU). An assembly or part that a customer can replace in its entirety when any of its components fail. Contrast with field replaceable unit (FRU).

cyclic redundancy check (CRC). (1) A redundancy check in which the check key is generated by a cyclic algorithm. (2) An error detection technique performed at both the sending and receiving stations.

dac. See disk array controller.

dar. See disk array router.

DASD. See direct access storage device.

data striping. See striping.

default host group. A logical collection of discovered host ports, defined host computers, and defined host groups in the storage-partition topology that fulfill the following requirements:

- Are not involved in specific logical drive-to-LUN mappings
- Share access to logical drives with default logical drive-to-LUN mappings

device type. Identifier used to place devices in the physical map, such as the switch, hub, or storage.

DHCP. See Dynamic Host Configuration Protocol.

direct access storage device (DASD). A device in which access time is effectively independent of the location of the data. Information is entered and retrieved without reference to previously accessed data. (For example, a disk drive is a DASD, in contrast with a tape drive, which stores data as a linear sequence.) DASDs include both fixed and removable storage devices.

direct memory access (DMA). The transfer of data between memory and an input/output (I/O) device without processor intervention.

disk array controller (dac). A disk array controller device that represents the two controllers of an array. See also disk array router.

disk array router (dar). A disk array router that represents an entire array, including current and deferred paths to all logical unit numbers (LUNs) (hdisks on AIX). See also disk array controller.
DMA. See direct memory access.

domain. The most significant byte in the node port (N_port) identifier for the fibre-channel (FC) device. It is not used in the fibre-channel-small computer system interface (FC-SCSI) hardware path ID. It is required to be the same for all SCSI targets logically connected to an FC adapter.

DRAM. See dynamic random access memory.

Dynamic Host Configuration Protocol (DHCP). A protocol defined by the Internet Engineering Task Force that is used for dynamically assigning Internet Protocol (IP) addresses to computers in a network.

dynamic random access memory (DRAM). A storage in which the cells require repetitive application of control signals to retain stored data.

ECC. See error correction coding.

EEPROM. See electrically erasable programmable read-only memory.

EISA. See Extended Industry Standard Architecture.

electrically erasable programmable read-only memory (EEPROM). A type of memory chip which can retain its contents without consistent electrical power. Unlike the PROM which can be programmed only once, the EEPROM can be erased electrically. Because it can only be reprogrammed a limited number of times before it wears out, it is appropriate for storing small amounts of data that are changed infrequently.

electrostatic discharge (ESD). The flow of current that results when objects that have a static charge come into close enough proximity to discharge.

environmental services monitor (ESM) canister. A component in a drive enclosure that monitors the environmental condition of the components in that enclosure. Not all storage subsystems have ESM canisters.

E_port. See expansion port.

error correction coding (ECC). A method for encoding data so that transmission errors can be detected and corrected by examining the data on the receiving end. Most ECCs are characterized by the maximum number of errors they can detect and correct.

ESD. See electrostatic discharge.

ESM canister. See environmental services monitor canister.

EXP. See expansion unit.

expansion unit (EXP). A feature that can be connected to a system unit to provide additional storage and processing capacity.

Extended Industry Standard Architecture (EISA). A bus standard for IBM compatibles that extends the Industry Standard Architecture (ISA) bus architecture to 32 bits and allows more than one central processing unit (CPU) to share the bus. See also Industry Standard Architecture.

fabric. A Fibre Channel entity which interconnects and facilitates logins of N_ports attached to it. The fabric is responsible for routing frames between source and destination N_ports using address information in the frame header. A fabric can be as simple as a point-to-point channel between two N-ports, or as complex as a frame-routing switch that provides multiple and redundant internal pathways within the fabric between F_ports.

fabric port (F_port). In a fabric, an access point for connecting a user’s N_port. An F_port facilitates N_port logins to the fabric from nodes connected to the fabric. An F_port is addressable by the N_port connected to it. See also fabric.

FASiT MSJ. See FASiT Management Suite Java.

FASiT Management Suite Java (FASiT MSJ). A diagnostic and configuration utility that can be used on Linux, Microsoft Windows, and Novell NetWare host systems. In Linux, it is also used with the QLRemote agent to define preferred and non-preferred paths for logical drives.

FC. See fibre channel.

FC-AL. See arbitrated loop.

feature enable identifier. A unique identifier for the storage subsystem, which is used in the process of generating a premium feature key. See also premium feature key.

fibre channel (FC). A set of standards for a serial input/output (I/O) bus capable of transferring data between two ports at up to 100 Mbps, with standards proposals to go to higher speeds. FC supports point-to-point, arbitrated loop, and switched topologies.

Fibre Channel-Arbitrated Loop (FC-AL). See arbitrated loop.

Fibre Channel Protocol (FCP) for small computer system interface (SCSI). A high-level fibre-channel mapping layer (FC-4) that uses lower-level fibre-channel (FC-PH) services to transmit SCSI commands, data, and status information between a SCSI initiator and a SCSI target across the FC link by using FC frame and sequence formats.
field replaceable unit (FRU). An assembly that is replaced in its entirety when any one of its components fails. In some cases, a field replaceable unit might contain other field replaceable units. Contrast with *customer replaceable unit* (CRU).

FlashCopy. A premium feature for DS4000 that can make an instantaneous copy of the data in a volume.

F_port. See *fabric port*.

FRU. See *field replaceable unit*.

GBIC. See *gigabit interface converter*.

gigabit interface converter (GBIC). A transceiver that performs serial, optical-to-electrical, and electrical-to-optical signal conversions for high-speed networking. A GBIC can be hot swapped. See also *small form-factor pluggable*.

Global Copy. Refers to a remote logical drive mirror pair that is set up using asynchronous write mode without the write consistency group option. This is also referred to as "Asynchronous Mirroring without Consistency Group." Global Copy does not ensure that write requests to multiple primary logical drives are carried out in the same order on the secondary logical drives as they are on the primary logical drives. If it is critical that writes to the primary logical drives are carried out in the same order in the appropriate secondary logical drives, Global Mirroring should be used instead of Global Copy. See also *asynchronous write mode*, *Global Mirroring*, *remote mirroring*, *Metro Mirroring*.

Global Mirroring. Refers to a remote logical drive mirror pair that is set up using asynchronous write mode with the write consistency group option. This is also referred to as "Asynchronous Mirroring with Consistency Group." Global Mirroring ensures that write requests to multiple primary logical drives are carried out in the same order on the secondary logical drives as they are on the primary logical drives, preventing data on the secondary logical drives from becoming inconsistent with the data on the primary logical drives. See also *asynchronous write mode*, *Global Copy*, *remote mirroring*, *Metro Mirroring*.

graphical user interface (GUI). A type of computer interface that presents a visual metaphor of a real-world scene, often of a desktop, by combining high-resolution graphics, pointing devices, menu bars and other menus, overlapping windows, icons, and the object-action relationship.

GUI. See *graphical user interface*.

HBA. See *host bus adapter*.

hdisk. An AIX term representing a logical unit number (LUN) on an array.

host. A system that is directly attached to the storage subsystem through a fibre-channel input/output (I/O) path. This system is used to serve data (typically in the form of files) from the storage subsystem. A system can be both a storage management station and a host simultaneously.

host bus adapter (HBA). An interface between the fibre-channel network and a workstation or server.

host computer. See *host*.

host group. An entity in the storage partition topology that defines a logical collection of host computers that require shared access to one or more logical drives.

host port. Ports that physically reside on the host adapters and are automatically discovered by the DS4000 Storage Manager software. To give a host computer access to a partition, its associated host ports must be defined.

hot swap. To replace a hardware component without turning off the system.

hub. In a network, a point at which circuits are either connected or switched. For example, in a star network, the hub is the central node; in a star/ring network, it is the location of wiring concentrators.

IBMSAN driver. The device driver that is used in a Novell NetWare environment to provide multipath input/output (I/O) support to the storage controller.

IC. See *integrated circuit*.

IDE. See *integrated drive electronics*.

in-band. Transmission of management protocol over the fibre-channel transport.

Industry Standard Architecture (ISA). Unofficial name for the bus architecture of the IBM PC/XT personal computer. This bus design included expansion slots for plugging in various adapter boards. Early versions had an 8-bit data path, later expanded to 16 bits. The "Extended Industry Standard Architecture" (EISA) further expanded the data path to 32 bits. See also *Extended Industry Standard Architecture*.

initial program load (IPL). The initialization procedure that causes an operating system to commence operation. Also referred to as a system restart, system startup, and boot.

integrated circuit (IC). A microelectronic semiconductor device that consists of many interconnected transistors and other components. ICs are constructed on a small rectangle cut from a silicon crystal or other semiconductor material. The small size of these circuits allows high speed, low power dissipation, and reduced manufacturing cost compared with board-level integration. Also known as a *chip*.
integrated drive electronics (IDE). A disk drive interface based on the 16-bit IBM personal computer Industry Standard Architecture (ISA) in which the controller electronics reside on the drive itself, eliminating the need for a separate adapter card. Also known as an Advanced Technology Attachment Interface (ATA).

Internet Protocol (IP). A protocol that routes data through a network or interconnected networks. IP acts as an intermediary between the higher protocol layers and the physical network.

Internet Protocol (IP) address. The unique 32-bit address that specifies the location of each device or workstation on the Internet. For example, 9.67.97.103 is an IP address.

interrupt request (IRQ). A type of input found on many processors that causes the processor to suspend normal processing temporarily and start running an interrupt handler routine. Some processors have several interrupt request inputs that allow different priority interrupts.

IP. See Internet Protocol.

IPL. See initial program load.

IRQ. See interrupt request.

ISA. See Industry Standard Architecture.

Java Runtime Environment (JRE). A subset of the Java Development Kit (JDK) for end users and developers who want to redistribute the Java Runtime Environment (JRE). The JRE consists of the Java virtual machine, the Java Core Classes, and supporting files.

JRE. See Java Runtime Environment.

label. A discovered or user entered property value that is displayed underneath each device in the Physical and Data Path maps.

LAN. See local area network.

LBA. See logical block address.

local area network (LAN). A computer network located on a user’s premises within a limited geographic area.

logical block address (LBA). The address of a logical block. Logical block addresses are typically used in hosts’ I/O commands. The SCSI disk command protocol, for example, uses logical block addresses.

logical partition (LPAR). (1) A subset of a single system that contains resources (processors, memory, and input/output devices). A logical partition operates as an independent system. If hardware requirements are met, multiple logical partitions can exist within a system. (2) A fixed-size portion of a logical volume. A logical partition is the same size as the physical partitions in its volume group. Unless the logical volume of which it is a part is mirrored, each logical partition corresponds to, and its contents are stored on, a single physical partition. (3) One to three physical partitions (copies). The number of logical partitions within a logical volume is variable.

logical unit number (LUN). An identifier used on a small computer system interface (SCSI) bus to distinguish among up to eight devices (logical units) with the same SCSI ID.

loop address. The unique ID of a node in fibre-channel loop topology sometimes referred to as a loop ID.

loop group. A collection of storage area network (SAN) devices that are interconnected serially in a single loop circuit.

loop port. A node port (N_port) or fabric port (F_port) that supports arbitrated loop functions associated with an arbitrated loop topology.

LPAR. See logical partition.

LUN. See logical unit number.

MAC. See medium access control.

management information base (MIB). The information that is on an agent. It is an abstraction of configuration and status information.

man pages. In UNIX-based operating systems, online documentation for operating system commands, subroutines, system calls, file formats, special files, stand-alone utilities, and miscellaneous facilities. Invoked by the man command.

MCA. See micro channel architecture.

media scan. A media scan is a background process that runs on all logical drives in the storage subsystem for which it has been enabled, providing error detection on the drive media. The media scan process scans all logical drive data to verify that it can be accessed, and optionally scans the logical drive data also.

medium access control (MAC). In local area networks (LANs), the sublayer of the data link control layer that supports medium-dependent functions and uses the services of the physical layer to provide services to the logical link control sublayer. The MAC sublayer includes the method of determining when a device has access to the transmission medium.

Metro Mirroring. This term is used to refer to a remote logical drive mirror pair which is set up with synchronous write mode. See also remote mirroring, Global Mirroring.

MIB. See management information base.
micro channel architecture (MCA). Hardware that is used for PS/2 Model 50 computers and above to provide better growth potential and performance characteristics when compared with the original personal computer design.

Microsoft Cluster Server (MSCS). MSCS, a feature of Windows NT Server (Enterprise Edition), supports the connection of two servers into a cluster for higher availability and easier manageability. MSCS can automatically detect and recover from server or application failures. It can also be used to balance server workload and provide for planned maintenance.

mini hub. An interface card or port device that receives short-wave fiber channel GBICs or SFPs. These devices enable redundant fibre channel connections from the host computers, either directly or through a fibre channel switch or managed hub, over optical fiber cables to the DS4000 Storage Server controllers. Each DS4000 controller is responsible for two mini hubs. Each mini hub has two ports. Two host ports (two on each controller) provide a cluster solution without use of a switch. Two host-side mini hubs are shipped as standard. See also host port, gigabit interface converter (GBIC), small form-factor pluggable (SFP).

mirroring. A fault-tolerance technique in which information on a hard disk is duplicated on additional hard disks. See also remote mirroring.

model. The model identification that is assigned to a device by its manufacturer.

MSCS. See Microsoft Cluster Server.

network management station (NMS). In the Simple Network Management Protocol (SNMP), a station that runs management application programs that monitor and control network elements.

NMI. See non-maskable interrupt.

NMS. See network management station.

non-maskable interrupt (NMI). A hardware interrupt that another service request cannot overrule (mask). An NMI bypasses and takes priority over interrupt requests generated by software, the keyboard, and other such devices and is issued to the microprocessor only in disastrous circumstances, such as severe memory errors or impending power failures.

node. A physical device that allows for the transmission of data within a network.

node port (N_port). A fibre-channel defined hardware entity that performs data communications over the fibre-channel link. It is identifiable by a unique worldwide name. It can act as an originator or a responder.

nonvolatile storage (NVS). A storage device whose contents are not lost when power is cut off.

N_port. See node port.

NVS. See nonvolatile storage.

NVS RAM. Nonvolatile storage random access memory. See nonvolatile storage.

Object Data Manager (ODM). An AIX proprietary storage mechanism for ASCII stanza files that are edited as part of configuring a drive into the kernel.

ODM. See Object Data Manager.

out-of-band. Transmission of management protocols outside of the fibre-channel network, typically over Ethernet.

partitioning. See storage partition.

parity check. (1) A test to determine whether the number of ones (or zeros) in an array of binary digits is odd or even. (2) A mathematical operation on the numerical representation of the information communicated between two pieces. For example, if parity is odd, any character represented by an even number has a bit added to it, making it odd, and an information receiver checks that each unit of information has an odd value.

PCI local bus. See peripheral component interconnect local bus.

PDF. See portable document format.

performance events. Events related to thresholds set on storage area network (SAN) performance.

peripheral component interconnect local bus (PCI local bus). A local bus for PCs, from Intel, that provides a high-speed data path between the CPU and up to 10 peripherals (video, disk, network, and so on). The PCI bus coexists in the PC with the Industry Standard Architecture (ISA) or Extended Industry Standard Architecture (EISA) bus. ISA and EISA boards plug into an IA or EISA slot, while high-speed PCI controllers plug into a PCI slot. See also Industry Standard Architecture, Extended Industry Standard Architecture.

polling delay. The time in seconds between successive discovery processes during which discovery is inactive.

port. A part of the system unit or remote controller to which cables for external devices (such as display stations, terminals, printers, switches, or external storage units) are attached. The port is an access point for data entry or exit. A device can contain one or more ports.

portable document format (PDF). A standard specified by Adobe Systems, Incorporated, for the
electronic distribution of documents. PDF files are compact; can be distributed globally by e-mail, the Web, intranets, or CD-ROM; and can be viewed with the Acrobat Reader, which is software from Adobe Systems that can be downloaded at no cost from the Adobe Systems home page.

premium feature key. A file that the storage subsystem controller uses to enable an authorized premium feature. The file contains the feature enable identifier of the storage subsystem for which the premium feature is authorized, and data about the premium feature. See also feature enable identifier.

private loop. A freestanding arbitrated loop without fabric attachment. See also arbitrated loop.

program temporary fix (PTF). A temporary solution or bypass of a problem diagnosed by IBM in a current unaltered release of the program.

PTF. See program temporary fix.

RAID. See redundant array of independent disks (RAID).

RAID level. An array’s RAID level is a number that refers to the method used to achieve redundancy and fault tolerance in the array. See also array, redundant array of independent disks (RAID).

RAID set. See array.

RAM. See random-access memory.

random-access memory (RAM). A temporary storage location in which the central processing unit (CPU) stores and executes its processes. Contrast with DASD.

RDAC. See redundant disk array controller.

read-only memory (ROM). Memory in which stored data cannot be changed by the user except under special conditions.

recoverable virtual shared disk (RVSD). A virtual shared disk on a server node configured to provide continuous access to data and file systems in a cluster.

redundant array of independent disks (RAID). A collection of disk drives (array) that appears as a single volume to the server, which is fault tolerant through an assigned method of data striping, mirroring, or parity checking. Each array is assigned a RAID level, which is a specific number that refers to the method used to achieve redundancy and fault tolerance. See also array, parity check, mirroring, RAID level, striping.

redundant disk array controller (RDAC). (1) In hardware, a redundant set of controllers (either active/passive or active/active). (2) In software, a layer that manages the input/output (I/O) through the active controller during normal operation and transparently reroutes I/Os to the other controller in the redundant set if a controller or I/O path fails.

remote mirroring. Online, real-time replication of data between storage subsystems that are maintained on separate media. The Enhanced Remote Mirror Option is a DS4000 premium feature that provides support for remote mirroring. See also Global Mirroring, Metro Mirroring.

ROM. See read-only memory.

router. A computer that determines the path of network traffic flow. The path selection is made from several paths based on information obtained from specific protocols, algorithms that attempt to identify the shortest or best path, and other criteria such as metrics or protocol-specific destination addresses.

RVSD. See recoverable virtual shared disk.

SAI. See Storage Array Identifier.

SA Identifier. See Storage Array Identifier.

SAN. See storage area network.

SATA. See serial ATA.

scope. Defines a group of controllers by their Internet Protocol (IP) addresses. A scope must be created and defined so that dynamic IP addresses can be assigned to controllers on the network.

SCSI. See small computer system interface.

segmented loop port (SL_port). A port that allows division of a fibre-channel private loop into multiple segments. Each segment can pass frames around as an independent loop and can connect through the fabric to other segments of the same loop.

sense data. (1) Data sent with a negative response, indicating the reason for the response. (2) Data describing an I/O error. Sense data is presented to a host system in response to a sense request command.

serial ATA. The standard for a high-speed alternative to small computer system interface (SCSI) hard drives. The SATA-I standard is equivalent in performance to a 10 000 RPM SCSI drive.

serial storage architecture (SSA). An interface specification from IBM in which devices are arranged in a ring topology. SSA, which is compatible with small computer system interface (SCSI) devices, allows full-duplex packet multiplexed serial data transfers at rates of 20 Mbps in each direction.

server. A functional hardware and software unit that delivers shared resources to workstation client units on a computer network.

server/device events. Events that occur on the server or a designated device that meet criteria that the user sets.
SFP. See small form-factor pluggable.

Simple Network Management Protocol (SNMP). In the Internet suite of protocols, a network management protocol that is used to monitor routers and attached networks. SNMP is an application layer protocol. Information on devices managed is defined and stored in the application’s Management Information Base (MIB).

SL_port. See segmented loop port.

SMagent. The DS4000 Storage Manager optional Java-based host-agent software, which can be used on Microsoft Windows, Novell NetWare, HP-UX, and Solaris host systems to manage storage subsystems through the host fibre-channel connection.

SMclient. The DS4000 Storage Manager client software, which is a Java-based graphical user interface (GUI) that is used to configure, manage, and troubleshoot storage servers and expansion units in a DS4000 storage subsystem. SMclient can be used on a host system or on a storage management station.

SMruntime. A Java compiler for the SMclient.

SMutil. The DS4000 Storage Manager utility software that is used on Microsoft Windows, HP-UX, and Solaris host systems to register and map new logical drives to the operating system. In Microsoft Windows, it also contains a utility to flush the cached data of the operating system for a particular drive before creating a FlashCopy.

small computer system interface (SCSI). A standard hardware interface that enables a variety of peripheral devices to communicate with one another.

small form-factor pluggable (SFP). An optical transceiver that is used to convert signals between optical fiber cables and switches. An SFP is smaller than a gigabit interface converter (GBIC). See also gigabit interface converter.

SNMP trap event. (1) (2) An event notification sent by the SNMP agent that identifies conditions, such as thresholds, that exceed a predetermined value. See also Simple Network Management Protocol.

SNMPv1. The original standard for SNMP is now referred to as SNMPv1, as opposed to SNMPv2, a revision of SNMP. See also Simple Network Management Protocol.

SRAM. See static random access memory.

SSA. See serial storage architecture.

static random access memory (SRAM). Random access memory based on the logic circuit know as flip-flop. It is called static because it retains a value as long as power is supplied, unlike dynamic random access memory (DRAM), which must be regularly refreshed. It is however, still volatile, meaning that it can lose its contents when the power is turned off.

storage area network (SAN). A dedicated storage network tailored to a specific environment, combining servers, storage products, networking products, software, and services. See also fabric.

Storage Array Identifier (SAI or SA Identifier). The Storage Array Identifier is the identification value used by the DS4000 Storage Manager host software (SMClient) to uniquely identify each managed storage server. The DS4000 Storage Manager SMClient program maintains Storage Array Identifier records of previously-discovered storage servers in the host resident file, which allows it to retain discovery information in a persistent fashion.

storage management station. A system that is used to manage the storage subsystem. A storage management station does not need to be attached to the storage subsystem through the fibre-channel input/output (I/O) path.

storage partition. Storage subsystem logical drives that are visible to a host computer or are shared among host computers that are part of a host group.

storage partition topology. In the DS4000 Storage Manager client, the Topology view of the Mappings window displays the default host group, the defined host group, the host computer, and host-port nodes. The host port, host computer, and host group topological elements must be defined to grant access to host computers and host groups using logical drive-to-LUN mappings.

striping. Splitting data to be written into equal blocks and writing blocks simultaneously to separate disk drives. Striping maximizes performance to the disks. Reading the data back is also scheduled in parallel, with a block being read concurrently from each disk then reassembled at the host.

subnet. An interconnected but independent segment of a network that is identified by its Internet Protocol (IP) address.

sweep method. A method of sending Simple Network Management Protocol (SNMP) requests for information to all the devices on a subnet by sending the request to every device in the network.

switch. A fibre-channel device that provides full bandwidth per port and high-speed routing of data by using link-level addressing.

switch group. A switch and the collection of devices connected to it that are not in other groups.
switch zoning. See zoning.

synchronous write mode. In remote mirroring, an option that requires the primary controller to wait for the acknowledgment of a write operation from the secondary controller before returning a write I/O request completion to the host. See also asynchronous write mode, remote mirroring, Metro Mirroring.

system name. Device name assigned by the vendor’s third-party software.

TCP. See Transmission Control Protocol.

terminate and stay resident program (TSR program). A program that installs part of itself as an extension of DOS when it is executed.

topology. The physical or logical arrangement of devices on a network. The three fibre-channel topologies are fabric, arbitrated loop, and point-to-point. The default topology for the disk array is arbitrated loop.

TL_port. See translated loop port.

transceiver. A device that is used to transmit and receive data. Transceiver is an abbreviation of transmitter-receiver.

translated loop port (TL_port). A port that connects to a private loop and allows connectivity between the private loop devices and off loop devices (devices not connected to that particular TL_port).

Transmission Control Protocol (TCP). A communication protocol used in the Internet and in any network that follows the Internet Engineering Task Force (IETF) standards for internetwork protocol. TCP provides a reliable host-to-host protocol between hosts in packed-switched communication networks and in interconnected systems of such networks. It uses the Internet Protocol (IP) as the underlying protocol.

trap. In the Simple Network Management Protocol (SNMP), a message sent by a managed node (agent function) to a management station to report an exception condition.

trap recipient. Receiver of a forwarded Simple Network Management Protocol (SNMP) trap. Specifically, a trap receiver is defined by an Internet Protocol (IP) address and port to which traps are sent.

Presumably, the actual recipient is a software application running at the IP address and listening to the port.

TSR program. See terminate and stay resident program.

uninterruptible power supply. A source of power from a battery that is installed between a computer system and its power source. The uninterruptible power supply keeps the system running if a commercial power failure occurs, until an orderly shutdown of the system can be performed.

user action events. Actions that the user takes, such as changes in the storage area network (SAN), changed settings, and so on.

worldwide name (WWN). A unique identifier for a switch on local and global networks.

WORM. See write-one read-many.

write-one read many (WORM). Any type of storage medium to which data can be written only a single time, but can be read from any number of times. After the data is recorded, it cannot be altered.

WWN. See worldwide name.

zoning. (1) In Fibre Channel environments, the grouping of multiple ports to form a virtual, private, storage network. Ports that are members of a zone can communicate with each other, but are isolated from ports in other zones. (2) A function that allows segmentation of nodes by address, name, or physical port and is provided by fabric switches or hubs.
Index

A
- adapters, 2-Gb 1
- AIX 1

C
- cabling instructions xvii
- Class A electronic emission notice 138
- comments, how to send xxvi
- complete SM SW installation xvii
- concepts guide xvii
- Concepts Guide xxiii
- configure storage hardware xvii
- configure storage subsystems on host xvii
- connect power xvii
- Copy Services Guide xxiii

D
- determine management method xvii
- documentation
 - DS4000 Problem Determination Guide xvi
 - DS4000 Storage Manager xxiii
 - managed hubs and switches 1 related xxii
 - DS4000 FC2-133 host bus adapter additional service information 18
 - general checkout 17
 - installation problems 17
 - operating environment 18
 - overview 17
 - specifications 18, 19
 - DS4000 host adapter
 - additional service information 14
 - general checkout 13
 - operating environment 14
 - specifications 14, 15
 - DS4000 Storage Manager related documents xxii
 - DS4000 Storage Manager 9 user tasks xxiii
 - DS4100 Storage Server library xx
 - DS4300 Fibre Channel Storage Server library xx
 - DS4300 storage server
 - additional service information 64
 - diagnostics 70
 - general checkout 62
 - parts listing 79
 - symptom-to-FRU index 76
 - DS4400 storage server
 - general checkout 81
 - parts listing 90
 - symptom-to-FRU index 89
 - DS4400 Storage Server library xix
 - DS4500 Fibre Channel Storage Server library xviii
- DS4500 storage server
 - general checkout 93
 - parts listing 103
 - symptom-to-FRU index 101

E
- electronic emission Class A notice 138
 - Ethernet
 - ports 69

F
- FAST EXP15
 - additional service information 105
 - diagnostics and test information 105
 - symptom-to-FRU index 108
- FAST EXP200
 - additional service information 105
 - diagnostics and test information 105
 - symptom-to-FRU index 108
- FAST EXP500
 - additional service information 111
 - parts listing 116
 - symptom-to-FRU index 115
- FASTT200 and FASTT200 HA, Type 3542
 - additional service information 36
 - diagnostics 39
 - general checkout 35
 - parts listing 45
 - symptom-to-FRU index 44
- FASTT500 RAID controller
 - general checkout 47
 - parts listing 58
 - symptom-to-FRU index 57
 - tested configurations 52
- FC cabling instructions xvii
- FC HW maintenance and problem determination guide xvii
- FC planning and integration user’s guide and service information xvii
- FC storage server installation guide xvii
- FCC Class A notice 138
- fibre channel PCI adapter
 - additional service information 11
 - general checkout 11
 - operating environment 12
 - specifications 12
 - fire suppression xxvi

G
- glossary 141

H
- hardware installation process xvii
- hardware maintenance and problem determination xvii

I
- install and verify SM SW on host and workstation xvii
- install network hardware xvii
- install storage expansion unit xvii
- install storage server/RAID enclosures in rack xvii
- installation and support OS guides xvii
- installation guide, storage server xvii
- installation planning xvii
- installation process xvii

M
- make FC connections xvii
- migration guide xvii

N
- notes, important 138
- notices
 - electronic emission 138
 - FCC, Class A 138
 - used in this document xxiii

O
- online help xvii

P
- prepare for SM SW installation xvii
- prepare network connection xvii
- pSeries 1

R
- RAID controller enclosure unit
 - installation guide xvii

S
- SAN Data Gateway Router
diagnostics 133
- LED indicators 119
- service aids 119
- set link speed xvii
- SM concepts guide xvii
- SM installation and support guide for Linux xvii

© Copyright IBM Corp. 2004
SM installation and support guide for Novell NetWare xvii
SM installation and support guide for Windows 2000 xvii
SM installation and support guide for Windows NT xvii
software installation process xvii
software service and support xxv
start server xvii
storage expansion unit installation guide xvii
storage server installation guide xvii

T
trademarks 137
Type 3523 fibre channel hub and GBIC
additional service information 5
general checkout 4
parts listing 9
port status LEDs 4
symptom-to-FRU index 8
verifying GBIC and cable signal presence 4
Type 3526 fibre channel RAID controller
additional service information 22
general checkout 21
parts listing 33
symptom-to-FRU index 32

U
United States electronic emission Class A notice 138
United States FCC Class A notice 138
user tasks
DS4000 Storage Manager xxiii
DS4100 Storage Server xx
DS4300 Fibre Channel Storage Server xx
DS4400 Fibre Channel Storage Server xix
DS4500 Fibre Channel Storage Server xviii
related documents xxii

V
verify server operation w/ LEDs xvii

W
web sites, related xxv
Readers’ Comments — We’d Like to Hear from You

IBM TotalStorage DS4000
Hardware Maintenance Manual

Publication No. GC26-7702-00

Overall, how satisfied are you with the information in this book?

<table>
<thead>
<tr>
<th>Overall satisfaction</th>
<th>Very Satisfied</th>
<th>Satisfied</th>
<th>Neutral</th>
<th>Dissatisfied</th>
<th>Very Dissatisfied</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How satisfied are you that the information in this book is:

<table>
<thead>
<tr>
<th></th>
<th>Very Satisfied</th>
<th>Satisfied</th>
<th>Neutral</th>
<th>Dissatisfied</th>
<th>Very Dissatisfied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accurate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easy to find</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easy to understand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well organized</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applicable to your tasks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? □ Yes □ No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you.

Name

Address

Company or Organization

Phone No.